• 제목/요약/키워드: Path Control

검색결과 2,409건 처리시간 0.038초

스마트 팜의 자동 제어를 위한 AMCS(Agricultural Machine Control System) 설계 (A Design of AMCS(Agricultural Machine Control System) for the Automatic Control of Smart Farms)

  • 정이나;이병관;안희학
    • 한국정보전자통신기술학회논문지
    • /
    • 제12권3호
    • /
    • pp.201-210
    • /
    • 2019
  • 본 논문에서는 농장의 위성 사진 혹은 드론 사진을 이용하여 농장을 구분하고 농장 드론과 트랙터의 자율주행 및 행동을 제어하는 'AMCS(Agricultural Machine Control System)'를 제안한다. AMCS는 드론과 트랙터의 센서 데이터 및 비디오 영상 데이터로부터 농장 경계를 구분하고, 메인 서버에서 원격 제어 명령어를 읽어 들인 후 드론 및 트랙터 스프링클러와의 연동을 통해, 관리지역 내의 원격 제어 명령을 전달하는 'LSM(Local Server Module)'과 드론과 트랙터가 농장 밖에서 농장으로 이동하는 경로와 농장 안에서 저비용, 고효율로 일을 처리할 수 있는 경로를 설정하는 'PSM(Path Setting Module)'으로 구성된다. 본 논문에서 제안하는 AMCS의 성능분석 결과 AMCS의 PSM은 외부 출발점에서 농장까지 도달하는 경로를 설정할 때 다익스트라 알고리즘보다 약 100% 향상된 성능을 보였으며, 농장 내부 작업 경로를 설정할 때 기존 경로보다 약 13% 높은 작업 효율을 보였고 36% 낮은 작업 거리를 설정했다. 따라서 PSM은 기존 방식보다 더 효율적으로 트랙터와 드론을 제어할 수 있다.

A Study on Design of Anti-Sway Controller for ATC using Two Degree of Freedom PID Control

  • Sohn, Dong-Seop;Lee, Jin-Woo;Lee, Young-Jin;Lee, Kwon-Soon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1327-1332
    • /
    • 2003
  • In this paper, an ATC(Automated Transfer Crane) control system is required rapid transportation to get highest productivity with low cost. Therefore, the container paths should be built in terms of the least time and least sway when container is transferred from the initial coordinate to the finial coordinate. So we applied the best-first search method for forming the container path, and calculated the anti-collision path for avoiding collision in its movement to the finial coordinate. And we constructed the neural network two degree of freedom PID (TDOFPID) controller to control the precise navigation. For simulation, we constructed the container profiles so that we analyzed the state of formed path and the performance of TDOFPID controller to the formatted path. Then we compared the performance of ES-tuned PID controller with our proposed controller in terms of trolley position, anti-sway, path change, disturbance, and the load of containers. The computer simulation results show that the proposed controller has better the other on the various conditions.

  • PDF

비구면 가공을 위한 공구 경로 제어 알고리즘 (Tool Path Control Algorithm for Aspherical Surface Grinding)

  • 김형태;양해정
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.100-103
    • /
    • 2005
  • In this study, tool path control algorithm for aspherical surface grinding was derived and discussed. The aspherical surface actually means contact points between lens and tool. Tool positions are generally defined at the center of a tool, so there is difference between tool path and lens surface. The path was obtained from contact angle and relative position from the contact point. The angle could be calculated after differentiating an aspheric equation and complex algebraic operations. The assumption of the control algorithm was that x moves by constant velocity while z velocity varies. X was normal to the radial direction of lens, but z was tangential. The z velocities and accelerations were determined from current error and next position in each step. In the experiment, accuracy of the control algorithm was checked on a micro-precision machine. The result showed that the control error tended to be diminished when the tool diameter increased, and the error was under sub-micro level.

  • PDF

비최소위상 상쇄계를 가진 시스템을 위한 주기소음의 적응 역 궤환 제어 (Adaptive Inverse Feedback Control of Periodic Noise for Systems with Nonminimum Phase Cancellation Path)

  • 김선민;박영진
    • 제어로봇시스템학회논문지
    • /
    • 제7권11호
    • /
    • pp.891-895
    • /
    • 2001
  • An alternative inverse feedback structure for adaptive active control of periodic noise is introduced for systems with nonminimum phase cancellation path. To obtain the inverse model of the nonminimum phase cancellation path, the cancellation path model can be factorized into a minimum phase term and a maximum phase term. The maximum phase term containing unstable zeros makes the inverse model unstable. To avoid the instability, we alter the inverse model of the maximum phase system into an anti-causal FIR one. An LMS predictor estimates the future samples of the noise, which are necessary for causality of both anti-causal FIR approximation for the stable inverse of the maximum phase system and time-delay existing in the cancellation path. The proposed method has a faster convergence behavior and a better transient response than the conventional filtered-x LMS algorithms with the same internal model control structure since a filtered reference signal is not required. We compare the proposed methods with the conventional methods through simulation studies.

  • PDF

Path Following Control of Mobile Robot Using Lyapunov Techniques and PID Cntroller

  • Jin, Tae-Seok;Tack, Han-Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제11권1호
    • /
    • pp.49-53
    • /
    • 2011
  • Path following of the mobile robot is one research hot for the mobile robot navigation. For the control system of the wheeled mobile robot(WMR) being in nonhonolomic system and the complex relations among the control parameters, it is difficult to solve the problem based on traditional mathematics model. In this paper, we presents a simple and effective way of implementing an adaptive following controller based on the PID for mobile robot path following. The method uses a non-linear model of mobile robot kinematics and thus allows an accurate prediction of the future trajectories. The proposed controller has a parallel structure that consists of PID controller with a fixed gain. The control law is constructed on the basis of Lyapunov stability theory. Computer simulation for a differentially driven nonholonomic mobile robot is carried out in the velocity and orientation tracking control of the nonholonomic WMR. The simulation results of wheel type mobile robot platform are given to show the effectiveness of the proposed algorithm.

엑티브 머플러를 이용한 실차 배기 소음 저감에 관한 연구 (A study on the exhaust noise reduction of automobile with the active muffler)

  • 홍진석;신준;김흥섭;송진호;오재응
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.283-287
    • /
    • 1996
  • The exhaust noise reduction of automobile with the active muffler is experimentally investigated. The control algorithm is the filtered-x LMS algorithm and the inverse algorithm with the adaptive line enhancer. Also, the control efficiency is increased with synthesized second harmonic engine frequency. In the experiment, the active muffler is applied to the end of exhaust system in automobile and the control with on-line secondary path modeling method(inverse algorithm) is compared the control of off-line secondary path modeling method. As secondary path transfer functions are changed, the experimental results show that the control performance with on-line method is more efficient than that with off-line method in the exhaust noise reduction of automobile.

  • PDF

Multi-level DVS Guidance and Output-feedback Path-following Control for Marine Surface Vehicles

  • Deng, Ying-Jie;Im, Nam-kyun
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2018년도 추계학술대회
    • /
    • pp.256-257
    • /
    • 2018
  • This paper deals with the path-following control for marine surface vehicles with underactuated characteristics. In consideration of practical limitations of actuators, an improved DVS(dynamic virtual ship) guidance algorithm is proposed with the multi-level DVS optionally selected to be tracked. To address the output-feedback control issue, an adaptive FLS(fuzzy logical systems) is devised to online approximate the kinematic states. Based on that observing framework, the path-following control law is thereafter derived. Simulations testify effectiveness of the proposed scheme

  • PDF

무인 비행선의 자동 경로 추종 시스템 개발 및 비행시험 (Design and Flight Test of Path Following System for an Unmanned Airship)

  • 정균명;성재민;김병수;제정형;이성근
    • 제어로봇시스템학회논문지
    • /
    • 제16권5호
    • /
    • pp.498-509
    • /
    • 2010
  • In this paper, a waypoint guidance law Line Tracking algorithm is designed for testing an Unmanned Airship. In order to verify, we develop an autonomous flight control and test system of unmanned airship. The flight test system is composed FCC (Flight Control Computer), GCS (Ground Control System), Autopilot & Guidance program, GUI (Graphic User Interface) based analysis program, and Test Log Sheet for the management of flight test data. It contains flight test results of single-path & multi-path following, one point continuation turn, LOS guidance, and safe mode for emergency.

시간지연기법을 적용한 재사용발사체 유도제어 시뮬레이션 (Simulation of Time-Delay Based Path-Tracking Control of Reusable Launch Vehicle)

  • 조우성;이형진;이열;고상호
    • 한국항공우주학회지
    • /
    • 제49권8호
    • /
    • pp.627-636
    • /
    • 2021
  • 본 논문에서는 재사용발사체 유도제어에 관한 연구를 다루었다. 이를 위하여 6자유도의 재사용발사체 운동방정식 모델링을 수행하였으며, 이를 이용하여 최적 재진입경로를 생성 및 해당 경로를 추종하는 유도제어 시뮬레이션을 수행하였다. 유도제어기 설계를 위하여 모델링 불확실성, 외란 및 고장에 강한 시간지연기법을 적용한 자세제어기와 비선형 유도법칙을 이용하였다. 고전적인 PD 제어기를 적용한 유도제어 시뮬레이션을 수행하여 시간지연기법을 적용한 재사용발사체의 유도제어 시뮬레이션과 비교 검증하였다.

독립관절제어 로봇의 관절외란해석과 최적경로위치 문제의 해법 (Joint disturbance torque analysis for independent joint controlled robots and its application in optimal path placement)

  • 최명환
    • 제어로봇시스템학회논문지
    • /
    • 제4권3호
    • /
    • pp.342-348
    • /
    • 1998
  • A majority of industrial robots are controlled by a simple joint servo control of joint actuators. In this type of control, the performance of control is greatly influenced by the joint interaction torques including Coriolis and centrifugal forces, which act as disturbance torques to the control system. As the speed of the robot increases, the effect of this disturbance torque increases, and hence makes the high speed - high precision control more difficult to achieve. In this paper, the joint disturbance torque of robots is analyzed. The joint disturbance torque is defined using the coefficients of dynamic equation of motion, and for the case of a 2 DOF planar robot, the conditions for the minimum and maximum joint disturbance torques are identified, and the effect of link parameters and joint variables on the joint disturbance torque are examined. Then, a solution to the optimal path placement problem is propose that minimizes the joint disturbance torque during a straight line motion. The proposed method is illustrated using computer simulation. The proposed solution method can be applied to a class of robots that are controlled by independent joint servo control, which includes the vast majority of industrial robots.

  • PDF