• Title/Summary/Keyword: Parallel magnetic field

Search Result 229, Processing Time 0.032 seconds

Azimuthal anchoring measurement of nematic liquid crystals using the strong magnetic field

  • Jang, Tae-Sug;Im, Ji-Young;Goh, Wan-Hee;Kim, Jong-Hyun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.664-667
    • /
    • 2009
  • We would like to show a measuring technique of azimuthal anchoring energy of the nematic liquid crystals. The electro-optical setup of liquid crystal cell, crossed polarizers and magnetic field was assumed. The planar or hybrid alignment cells were prepared. The director in the light entering substrate and the polarization of light was adjusted into parallel to the magnetic field. The director orientation of exit substrate and analyser maintained perpendicular to the magnetic field. As the magnetic field strength is increased, the director deviates from the easy axis and rotates to the field direction. We obtained an equation calculating the change of transmission with the field and measured experimentally the transmission. By comparing the calculating and experimental data, we obtained the azimuthal anchoring strength.

  • PDF

Magnetic Orientations of Bull Sperm Treated by DTT or Heparin

  • Suga, D.;Shinjo, A.;Kumianto, E.;Nakada, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.1
    • /
    • pp.10-18
    • /
    • 2000
  • This paper describes the magnetic orientation of the intact and demembranated bull sperm treated by DTT or heparin in a 5,400 G static field. Semen samples collected from four bulls (Japanese Black) were mixed to the same sperm density. One percentage triton X-100 was used to extract the plasma membrane. The intact and demembranated sperm suspensions were treated with 20, 200, 2,000 mM DTT, 100, 1,000 or 10,000 units heparin solutions at $4{^{\circ}C}$ for 6 days. The decondensation of the sperm nuclei treated by DTT or heparin was examined by measuring the sperm head area at 1, 3, and 6 days. After measuring the area, each sperm sample was exposed to a 5,400 G static magnetic field generated by Nd-Fe-B permanent magnets for 24 hours at room temperature. Results showed that the decondensation of bull sperm nuclei was not induced by the heparin treatment, however, incomplete decondensation was induced by the DTT treatment. During the magnetic orientation, bull sperms treated by DTT or heparin had low percentages of long axis perpendicular to the magnetic lines of force. However, different aspects were obtained for long axis perpendicular orientations following treatment of DTT or heparin. Through the DTT treatment, the decline of long axis perpendicularly oriented percentages was due to the increase of long axis parallel orientation with the head of the flat plane perpendicular to the magnetic lines of force, whereas, using the heparin treatment, the decline of long axis perpendicular orientation was due to the increment of long axis parallel orientation with the head of the flat plane parallel to the magnetic lines of force. Also, percentages of the head of the flat plane perpendicular were decreased by the heparin treatment. These findings suggest that maintaining the structure of protamine in the chromatin is necessary for the sperm head to orient with its flat plane perpendicular, and maintaining the disulfide bond in the chromatin is necessary for the long axis of sperm to orient perpendicularly.

A Study on the Influence Coaxial Parallel Magnetic Field upon Plasma Jet (II) (Plasma Jet의 동축평행자계에 의한 영향에 관한 연구 2)

  • Choon Saing Jhoun
    • 전기의세계
    • /
    • v.22 no.5
    • /
    • pp.19-32
    • /
    • 1973
  • This paper treats with some of plasma jet behaviors under magnetic field for the purpose of controlling important characteristics of plasma jet in the practices of material manufacturings. Under the existence and non-existence of magnetic field, the pressure distribution, flame length, stability and noise of plasma jet are comparatively evaluated in respect of such parameters as are current, gap of electrode, quantity of argon flow, magnetic flux density, diameter and length of nozzle. The results are as follows: 1) the pressure, the length and the noise of plasma jet rise gradually with the increase of are current, and have high values under identical arc current as the diameter of nozzle increases, but reverse phenomenon tends to appear in the noise. 2) The pressure, the flame length and the noise increase with the increased quantity of argon flow, and the rising slope of noise is particularly steep. Under magnetic field, the quantity of argon flow in respect of flame length has the critical value of 80(cfh). 3) The pressure and length of flame decrease with small gradient value as the length of gap increases, but the noise tends to grow according to the increase of nozzle diameter. 4) The pressure and the length of jet flame decrease inversly with the increase of magnetic flux density, which have one critical value in the 100 amps of arc current and two values in 50 amps. The pressure of jet flame can be below atomospher pressure in strong magnetic field. 5) "The constriction length of nozzle has respectively the critical value of 6(mm) for pressure and 23(mm) for the length of flame. 6) Fluctuations in the wave form of voltage become greater with the increase of argon flow and magnetic flux density, but tends to decrease as arc current increases, having the frequency range of 3-8KHz. The wave form of noise changes almost in parallel with that of voltage and its changing value increases with argon flow, arc current and magnetic flux density, having the freuqency range of 6-8KHz. The fluctuation of jet presurre is reduced with the increase of argon flow and magnetic flux density and grows with arc current.rent.

  • PDF

Bending Strength of Textured Alumina Prepared by Slip Casting in a Strong Magnetic Field

  • Suzuki, Tohru S.;Uchikoshi, Tetsuo;Morita, Koji;Hirage, Keijiro;Sakka, Yoshio
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1099-1100
    • /
    • 2006
  • The mechanical properties of ceramics materials can be tailored by designing their microstructures. We have reported that development of texture can be controlled by slip casting in a strong magnetic field followed by heating even for diamagnetic ceramics such as alumina. A strong magnetic field of 12T was applied to the suspension indcuding alumina powder to rotate each particle during slip casting. The sintering was conducted at the desired temperature in air without a magnetic field. C-axis of alumina was parallel to the magnetic field. Bending strength of textured alumina depended on the direction of oriented microstructure.

  • PDF

EFFECT OF MAGNETIC FIELD ON LONGITUDINAL FLUID VELOCITY OF INCOMPRESSIBLE DUSTY FLUID

  • N. JAGANNADHAM;B.K. RATH;D.K. DASH
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.2
    • /
    • pp.401-411
    • /
    • 2023
  • The effects of longitudinal velocity dusty fluid flow in a weak magnetic field are investigated in this paper. An external uniform magnetic field parallel to the flow of dusty fluid influences the flow of dusty fluid. Besides that, the problem under investigation is completely defined in terms of identifying parameters such as longitudinal velocity (u), Hartmann number (M), dust particle interactions β, stock resistance γ, Reynolds number (Re) and magnetic Reynolds number (Rm). While using suitable transformations of resemblance, The governing partial differential equations are transformed into a system of ordinary differential equations. The Hankel Transformation is used to solve these equations numerically. The effects of representing parameters on the fluid phase and particle phase velocity flow are investigated in this analysis. The magnitude of the fluid particle is reduced significantly. The result indicates the magnitude of the particle reduced significantly. Although some of our numerical solutions agree with some of the available results in the literature review, other results differs because of the effect of the introduced magnetic field.

Theoretical construction of solar wind proton temperature anisotropy versus beta inverse correlation

  • Seough, Jungjoon;Yoon, Peter H.;Kim, Khan-Hyuk;Lee, Dong-Hun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.118.1-118.1
    • /
    • 2012
  • In situ observations from the Wind spacecraft that statistically analyzed the solar wind proton at 1 AU has indicated that the measured proton temperature anisotropies seems to be regulated by the oblique instabilities (the mirror and oblique firehose). This result is in contradiction with the prediction of linear kinetic theory that the ion-cyclotron (for ${\beta}_{\parallel}$ < 2) and parallel firehose (for ${\beta}_{\parallel}$ <10) would dominate over the oblique instabilities. Various kinds of physical mechanisms have been suggested to explain this disagreement between the observations and linear theory. All of the suggestions consider the solar wind as a unoform magnetized plasma. However the real space environment is replete with the intermediate spatio-temporal scale variations associated with various physical quantities, such as the magnetic field intensity and the solar wind density. In this paper we present that the pervasive intermediate-scale temporal variation of the local magnetic field intensity can lead to the modification of the proton temperature anisotropy versus beta inverse correlation for temperature-anisotropy-driven instabilities. By means of quasilinear kinetic theory involving such temporal variation, we construct the simulated solar wind proton data distribution associated the magnetic fluctuations in (${\beta}_{\parallel}$, $T_{\perp}/T_{\parallel}$) space. It is shown that the theoretically simulated proton distribution and a general trend of the enhanced fluctuations bounded by the oblique instabilities are consistent with in situ observations. Furthermore, the measure magnetic compressibility can be accounted for by the magnetic spectral signatures of the unstable modes.

  • PDF

Induced Magnetic Anisotropy of Sputtered FeN Films Due to Substrate Tilting

  • Park, Y.;S. Ryu;S. Jo
    • Journal of Magnetics
    • /
    • v.2 no.1
    • /
    • pp.22-24
    • /
    • 1997
  • FeN thin films were deposited by RF-reactive diode sputtering to investigate magnetic characteristics variation due to substrate tilt during the film deposition, and their magnetic properties were measured by VSM, SEM and AFM. When the substrate tilt pivot edges were parallel to the applied field, the magnetic anisotropy was increased When the substrate tilt pivot edges were perpendicular to the applied field, the easy magnetization axis became the hard magnetization axis, and the hard axis became the easy axis as the tilt angles were increased. The reason is believed to be due to the fact that the tilt induced shape magnetic anisotropy became larger than the field induced magnetic anisotropy by DC magnetic field as the crystal grains are enlongated along the substrate tilt pivot edges due to "oblique incidence anisotropy" commonly found in eveporated thin films.

  • PDF

Experimental Study on Magnetic Properties of YBCO Bulk Superconductor (YBCO Bulk 초전도체의 자화 특성에 관한 실험적 연구)

  • 강형구;나완수
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 1999.02a
    • /
    • pp.77-80
    • /
    • 1999
  • In this paper. We experimentally investigated the magnetic properties of YBCO bulk superconductor using AC magnetization method. The sample is 2.8cm wide in a diameter and 1.4cm long. We applied Ac magnetic field parallel to the direction of length of YBCO bulk. It is observed that YBCO bulk has the diamagnetic properties. AC loss calculation of YBCO bulk superconductor was performed by evaluating the total area of magnetization traces. As depends on the frequency and amplitude of the applied magnetic field.

  • PDF

A Study on the Effect of Magnetic Field in Electrostatic Precipitator for Improving Precipitation Efficiency of Particulate Matter (미세먼지의 집진효율 향상을 위한 전기집진기의 자계인가특성에 대한 연구)

  • Park, Jae-Youn;Han, Sang-Bo;Park, Sang-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.12
    • /
    • pp.122-129
    • /
    • 2008
  • This paper gives the experimental results for the effective precipitation of particulated matter(PM) below 1[${\mu}m$] of diameter using the electrostatic precipitator, which is designed by ourselves. In order to improve the precipitation efficiency, the vertical and parallel magnetic field to the electric field is applied simultaneously by arranging ferrite magnets. When the parallel magnetic field is applied, the precipitation efficiency does not improve in comparison with non-magnets. However, when the vertical magnetic field is applied, it is improved about 5[%] more than the case of non-magnetized ferrite plate used. In addition, when the magnets are installed at the center of ground plate electrodes, the precipitation efficiency is ranged from 17 to 32[%] under the applied voltage of 5[kV]. It is similar to the case of the magnet arrangement at the front part of ground electrode. Also, the precipitation efficiency is more improved by arranging magnets as the inside part and zigzag on the electrodes. Especially, large particles of 0.7 and 1[${\mu}m$] is more easily captured by electrostatic precipitator. Consequently, it is convinced that the vertical magnetic field is more desirable than parallel magnetic field on the electric field for the effective treatment of particulated matter.