• Title/Summary/Keyword: PZT(Lead Zirconate Titanate)

Search Result 114, Processing Time 0.034 seconds

Simulation of PZT monitoring of reinforced concrete beams retrofitted with CFRP

  • Providakis, C.P.;Triantafillou, T.C.;Karabalis, D.;Papanicolaou, A.;Stefanaki, K.;Tsantilis, A.;Tzoura, E.
    • Smart Structures and Systems
    • /
    • v.14 no.5
    • /
    • pp.811-830
    • /
    • 2014
  • A numerical study has been carried out to simulate an innovative monitoring procedure to detect and localize damage in reinforced concrete beams retrofitted with carbon fiber reinforced polymer (CFRP) unidirectional laminates. The main novelty of the present simulation is its ability to conduct the electromechanical admittance monitoring technique by considerably compressing the amount of data required for damage detection and localization. A FEM simulation of electromechanical admittance-based sensing technique was employed by applying lead zirconate titanate (PZT) transducers to acquire impedance spectrum signatures. Response surface methodology (RSM) is finally adopted as a tool for solving inverse problems to estimate the location and size of damaged areas from the relationship between damage and electromechanical admittance changes computed at PZT transducer surfaces. This statistical metamodel technique allows polynomial models to be produced without requiring complicated modeling or numerous data sets after the generation of damage, leading to considerably lower cost of creating diagnostic database. Finally, a numerical example is carried out regarding a steel-reinforced concrete (RC) beam model monotonically loaded up to its failure which is also retrofitted by a CFRP laminate to verify the validity of the present metamodeling monitoring technique. The load-carrying capacity of concrete is predicted in the present paper by utilizing an Ottosen-type failure surface in order to better take into account the passive confinement behavior of retrofitted concrete material under the application of FRP laminate.

A new damage identification approach based on impedance-type measurements and 2D error statistics

  • Providakis, Costas;Tsistrakis, Stavros;Voutetaki, Maristella;Tsompanakis, Yiannis;Stavroulaki, Maria;Agadakos, John;Kampianakis, Eleftherios;Pentes, George
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.4
    • /
    • pp.319-338
    • /
    • 2015
  • The electro-mechanical impedance (EMI) technique makes use of surface-bonded lead zirconate titanate (PZT) patches as impedance transducers measuring impedance variations monitored on host structural components. The present experimental work further evaluate an alternative to the conventional EMI technique which performs measurements of the variations in the output voltage of PZT transducers rather than computing electromechanical impedance (or admittance) itself. This paper further evaluates a variant of the EMI approach presented in a previous work of the present authors, suitable, for low-cost concrete structures monitoring applications making use of a credit card-sized Raspberry Pi single board computer as core hardware unit. This monitoring approach is also deployed by introducing a new damage identification index based on the ratio between the area of the 2-D error ellipse of specific probability of EMI-based measurements containment over that of the 2-D error circle of equivalent probability. Experimental results of damages occurring in concrete cubic and beam specimens are investigated under increasing loading conditions. Results illustrate that the proposed technique is an efficient approach for identification and early detection of damage in concrete structures.

Influence of Additives on Densification of Low-Temperature PZT Ceramics (저온소성용 PZT 세라믹스의 치밀화에 미치는 첨가제의 영향)

  • Park, Yong-Kap
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.5
    • /
    • pp.995-999
    • /
    • 2007
  • The lead zirconate titanate (PZT) powders were synthesized to make the piezoelectric ceramics in low temperature as low as $900^{\circ}C$. To investigate the influence of additives on sintering of PZT, two kinds of sintering aids were made as follows; $wB_2O_3-xBi_2O_3-zCuO$and LiBiO2-CuO. The sintering aid, $1{\sim}3$ wt.% $LiBiO_2-CuO$, was added into these PZT powders and the specimens were fired at temperature in the range of $800{\sim}1200^{\circ}C$. The highest density was shown in the specimen with 1 wt.% $LiBiO_2-CuO$ as additive at temperature of $900^{\circ}C$. The sintered specimen were analyzed by X-ray diffraction(XRD) and scanning electron microscopy (SEM) was utilized to observe the microstructure, especially the densified morphology of specimens. In the XRD pattern, the well-crystallized PZT phase could be obtained in consequence of firing at $900^{\circ}C$. The scanning electron microscopy(SEM) was utilized to observe the structure of specimens after firing at $900^{\circ}C$. The densified perovskite structure of $PbZrTiO_3$ could be obtained by sintering at temperature as low as $900^{\circ}C$. The high sinterability of PZT ceramics was attributed to the low formation temperature of the liquid phase of additives.

  • PDF

Condition Monitoring System of Wind Turbine (풍력발전기를 위한 상태 모니터링 기술)

  • Hameed, Z.;Hong, Y.S.;Ahn, S.H.;Cho, Y.M.;Song, C.K.;Park, Jong-Po
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.395-399
    • /
    • 2007
  • Renewable energy sources such as wind energy is copiously available without any limitation. Wind turbines are used to tap the potential of wind energy which is available in millions of megawatt. Reliability of wind turbine is critical to extract this maximum amount of energy from the wind. We reviewed different techniques, methodologies, and algorithms developed to monitor the performance of wind turbine as well as for an early fault detection to keep away the wind turbines from catastrophic conditions due to sudden breakdowns. To keep the wind turbine in operation, implementation of Condition Monitoring System (CMS) is paramount, and for this purpose ample knowledge of these types of system is mandatory. So, an attempt has been made in this direction to review maximum approaches related to CMS in this piece of writing.

  • PDF

Temperature Effect on Impedance-based Damage Monitoring of Steel-Bolt Connection using Wireless Impedance Sensor Node (무선 임피던스 센서노드를 이용한 강-볼트 접합부의 임피던스기반 손상모니터링에 미치는 온도 영향)

  • Hong, Dong-Soo;Kim, Jeong-Tae
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.27-33
    • /
    • 2012
  • This paper presents the effect of temperature on the impedance-based damage monitoring of steel-bolt connections using wireless impedance sensor nodes. In order to achieve the objective, the following approaches are implemented. First, a temperature-compensated damage monitoring scheme that includes a temperature compensation model and damage detection method is described. The temperature compensation model is designed by analyzing the linear regressions between the temperatures and impedance signatures. The correlation coefficient of the impedance signatures is selected as the damage index to monitor the damage occurrence in the target structures. Second, a wireless impedance sensor node is described for the design of the hardware components and embedded software. Finally, the performance of the temperature-compensated impedance-based damage monitoring scheme is evaluated for detecting a loose bolt in the steel-bolt connections on a lab-scale steel girder under various temperatures.

Processing and Characterization of Piezoelecteric Geramics Depending on Ball Milling Time (입자분쇄 시간변화에 따른 압전세라믹스 제작공정과 특성 분석)

  • Park, Jung-Ho;Bae, Suk-Hui;Kim, Chul-Su;Song, Seok-Cheon;Heo, Chang-Hoe;Lee, Sang-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 2000.11c
    • /
    • pp.413-415
    • /
    • 2000
  • Piezoelectric ceramics of PZT have been developed to apply for transformers in notebook. Use of piezoelectric ceramics in applications like piezoelectric transformers was made possible by the development of new materials with high electromechanical coupling coefficients and high mechanical quality factor. "Hard" ferroelectiric ceramics of complex composition based on lead zirconate titanate with Mn additive have been prepared. The perovskitic phase reaction of the oxides. The crucial role played by the intermediate mixing and grinding procedures in the assessment of the final properties of the material was investigated. Densification up to approximately the theoretical density value was achieved. The polarization was obtained by subjecting the samples at $30kVcm^{-1}$ poling electric field, in a silicon oil bath heated at $110^{\circ}C$. Their microstructural and morphological properties were checked by X-ray diffraction analysis and scanning electron microscopy. The optimized samples presented very high qualify and electromechanical coupling factors, together with small dielectric loss.

  • PDF

Impedance-based health monitoring and mechanical testing of structures

  • Palomino, Lizeth Vargas;de Moura, Jose Dos Reis Vieira Jr.;Tsuruta, Karina Mayumi;Rade, Domingos Alves;Steffen, Valder Jr.
    • Smart Structures and Systems
    • /
    • v.7 no.1
    • /
    • pp.15-25
    • /
    • 2011
  • The mechanical properties obtained from mechanical tests, such as tensile, buckling, impact and fatigue tests, are largely applied to several materials and are used today for preliminary studies for the investigation of a desired element in a structure and prediction of its behavior in use. This contribution focus on two widely used different tests: tensile and fatigue tests. Small PZT (Lead Titanate Zirconate) patches are bonded on the surface of test samples for impedance-based health monitoring purposes. Together with these two tests, the electromechanical impedance technique was performed by using aluminum test samples similar to those used in the aeronautical industry. The results obtained both from tensile and fatigue tests were compared with the impedance signatures. Finally, statistical meta-models were built to investigate the possibility of determining the state of the structure from the impedance signatures.

Ultra low-power active wireless sensor for structural health monitoring

  • Zhou, Dao;Ha, Dong Sam;Inman, Daniel J.
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.675-687
    • /
    • 2010
  • Structural Health Monitoring (SHM) is the science and technology of monitoring and assessing the condition of aerospace, civil and mechanical infrastructures using a sensing system integrated into the structure. Impedance-based SHM measures impedance of a structure using a PZT (Lead Zirconate Titanate) patch. This paper presents a low-power wireless autonomous and active SHM node called Autonomous SHM Sensor 2 (ASN-2), which is based on the impedance method. In this study, we incorporated three methods to save power. First, entire data processing is performed on-board, which minimizes radio transmission time. Considering that the radio of a wireless sensor node consumes the highest power among all modules, reduction of the transmission time saves substantial power. Second, a rectangular pulse train is used to excite a PZT patch instead of a sinusoidal wave. This eliminates a digital-to-analog converter and reduces the memory space. Third, ASN-2 senses the phase of the response signal instead of the magnitude. Sensing the phase of the signal eliminates an analog-to-digital converter and Fast Fourier Transform operation, which not only saves power, but also enables us to use a low-end low-power processor. Our SHM sensor node ASN-2 is implemented using a TI MSP430 microcontroller evaluation board. A cluster of ASN-2 nodes forms a wireless network. Each node wakes up at a predetermined interval, such as once in four hours, performs an SHM operation, reports the result to the central node wirelessly, and returns to sleep. The power consumption of our ASN-2 is 0.15 mW during the inactive mode and 18 mW during the active mode. Each SHM operation takes about 13 seconds to consume 236 mJ. When our ASN-2 operates once in every four hours, it is estimated to run for about 2.5 years with two AAA-size batteries ignoring the internal battery leakage.

Preparation of PZT Powders by Hydrothermal Synthesis : Effects of Starting Materials and the Agitation of Substrate on Powder Characteristics (수열합성법에 의한 PZT 분말제조 : 출발물질과 기질의 교반이 분말특성에 미치는 영향)

  • Jung, S.T.;Lee, K.J.;Seo, K.W.
    • Applied Chemistry for Engineering
    • /
    • v.8 no.2
    • /
    • pp.292-300
    • /
    • 1997
  • In this study PZT powders were prepared with shapes of cubic by hydrothermal synthesis with various starting materials, and the sintering characteristics of the powders were investigated. The particle shapes were cubic regardless of starting materials, but the mean size of particles formed using $Pb(NO_3)_2$, $Ti(OC_4H_9)_4$ and $Zr(OC_4H_9)_4$ was relatively smaller than that of particles prepared from other starting materials. Agitation of the feedstock during hydrothermal reaction results in decreasing the required reaction temperature for the formation of nuclei, and in increasing the size of product particles. XRD results showed that the major phase of PZT crystal powders was a tetragonal phase at the Zr to Ti ratio of 40 to 60, or a rhombohedral phase at its ratio of 60 to 40. The density of a sintered body made from the hydrothermal powders in PbO surrounding varied with sintering temperatures and with periods of sintering time. The experimental results also showed that the optimum sintering condition was at $1150^{\circ}C$ for a 2hr sintering, and that the density of a sintered body was $7.6g/cm^3$.

  • PDF

Comparison of Energy Harvesting Characteristics in Trapezoidal Piezoelectric Cantilever Generator with PZT Laminate Film by Longitudinal (3-3) Mode and Transverse (3-1) Mode (PZT 라미네이트 Trapezoidal Piezoelectric Cantilever Generator의 모드(3-1, 3-3)별 에너지 하베스팅 특성 비교)

  • Lee, Min-seon;Kim, Chang-il;Yun, Ji-sun;Park, Woon-ik;Hong, Youn-woo;Paik, Jong-hoo;Cho, Jeong-ho;Park, Yong-ho;Jeong, Young-hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.12
    • /
    • pp.768-775
    • /
    • 2017
  • Energy harvesting characteristics of trapezoidal piezoelectric cantilever generator, which has a lead zirconate titanate (PZT) laminate film, were compared by longitudinal (3-3) and transverse (3-1) modes. The PZT laminate film, fabricated by a conventional tape casting process, was cofired with Ag electrode at $850^{\circ}C$ for 2 h. A multi-layered Ag electrode by a planar pattern and an interdigitated pattern was applied to the PZT laminate to implement the 3-3 and 3-1 modes, respectively. The energy harvesting performance of the 3-3 mode trapezoidal piezoelectric cantilever generator was better than that of the 3-1 mode. An extremely high output power density of $26.7mW/cm^3$ for the 3-3 mode was obtained at a resonant frequency of 145 Hz under a load resistance of $50{\Omega}$ and acceleration of 1.3 G, which is ~3-times higher than that for the 3-1 mode. Therefore, the 3-3 mode is considered significantly efficient for application to high-performance piezoelectric cantilever generator.