• Title/Summary/Keyword: PWM정류기

Search Result 137, Processing Time 0.022 seconds

Active Control and PWM Method for Wireless Power Transfer Using Flux of Switching Frequency (스위칭 주파수의 자속을 사용한 능동 무선 전력 전송 제어와 PWM 기법)

  • Lee, Jun;Hong, Jin-Su;Ha, Jung-Ik
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.140-141
    • /
    • 2017
  • 이 논문은 스위칭 주파수의 자속을 사용한 무선 전력 전송방법을 제안한다. 제안된 시스템의 수신단은 정류기를 사용하지 않고 유도된 전압과 같은 주파수의 스위칭을 하며 다른 위상으로 코일에 전압을 인가하여 필요한 만큼의 전력을 (송)수신한다. 이와 함께 전원단과 수신단의 코일에 흐르는 전류가 전기기기의 구동 목적으로도 쓰일 수 있도록 저주파의 평균 전류 지령을 각각 수행할 수 있는 PWM 방식을 제안한다.

  • PDF

Characteristic Analysis of Thyristor PWM Rectifier for low-frequency Induction Heating System (저주파 유도가열 장치용 싸이리스터 PWM 정류기의 특성분석)

  • Yoon D.C.;Lee K.B.;Choy Y.D.;Beak S.T.;Han B.M.;Soh Y.C.
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.681-684
    • /
    • 2001
  • This paper proposes a new induction heating system composed of a thyristor PWM rectifier with a resonant commutation circuit. The operation of proposed system as first analyzed by a theoretical approach with equivalent circuits. And its verification was performed by computer simulations with EMTP. The proposed system can provide a solution for the power factor problem of the existing high-power induction heating system, which uses the line-commutated thyristor bridge in rectifier side.

  • PDF

Harmonic Reduction of Input Current in Boost-type Rectifier Using Sigma-Delta Modulation (시그마델타 변조기를 이용한 승압형 정류기의 입력전류 고조파 저감)

  • Bae, C.H.;Lee, B.S.;Park, H.J.;Lee, J.W.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1250-1252
    • /
    • 2003
  • This Paper presents Sigma-Delta Modulation(SDM) schemes to generate switching waveform for a high-power factor boost-type rectifier. The SDM scheme can be implemented by simple digital algorithm unlike conventional PWM schemes with several hardware, and has the characteristics of spectrum-spreading and noise-shaping effects, which are profitable in harmonic reduction of input current in the boost-type rectifier. The comparison results of their spectrum performances shows that the 1st-order SDM has better harmonic suppression effect than conventional PWM scheme and Dithered SDM scheme.

  • PDF

Characteristics analysis of single-phase high power factor PWM boost rectifier (단상 고역률 PWM 승압형 정류기의 특성해석)

  • Kim, J.Y.;Mun, S.P.;Suh, K.Y.;Kim, Y.M.;Kim, H.J.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1209-1210
    • /
    • 2006
  • This paper presents a single phase high power factor PWM boost rectifier featuring soft commutat -ion of the active switches at zero current. It incorporates the most desirable properties of conventional PWM and soft switching resonant techniques. The input current shaping is achieved with average current mode control and continuous inductor current mode. This new PWM converter provides zero current turn on and turn off of the active switches, and it is suitable for high power applications employing IGBT's. The principle of operation, the theoretical analysis, a design example, and experi -mental results from a laboratory prototype rated at 1.6[kW] with 400[Vdc] output voltage are presented. The measured efficiency and the power factor were 96.2[%] and 0.99[%], respectively, with an input current THD equal to 3.94[%], for an input voltage with THD equal to 3.8[%], at rated load.

  • PDF

A Fuzzy-PI Control Scheme of the Three-Phase Z-Source PWM Rectifier without AC-Side Voltage and Current Sensors (교류측 전압 및 전류 센서가 없는 3상 Z-소스 PWM 정류기의 퍼지-PI 제어)

  • Han, Keun-Woo;Jung, Young-Gook;Lim, Young-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.6
    • /
    • pp.767-781
    • /
    • 2013
  • In this paper, we proposes the AC input voltage and current sensorless control scheme to control the input power factor and DC output voltage of the three-phase Z-source PWM rectifier. For DC-link voltage control which is sensitive to the system parameters of the PWM rectifier, fuzzy-PI controller is used. Because the AC input voltage and current are estimated using only the DC-link voltage and current, AC input voltage and current sensors are not required. In addition, the unity input power factor and DC output voltage can be controlled. The phase-angle of the detected AC input voltage and estimated voltage, the response characteristics of the DC output voltage according to the DC voltage references, the FFT results of the estimated voltage and current, efficiency, and the response characteristics of the conventional PI controller and fuzzy-PI controller are verified by PSIM simulation.

The 1.6[kW] Class Single Phase ZCS-PWM High Power Factor Boost Rectifier (1.6[kW]급 단상 ZCS-PWM HPF 승압형 정류기)

  • Mun, S.P.;Kim, S.I.;Yun, Y.T.;Kim, Y.M.;Lee, H.W.;Suh, K.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1169-1171
    • /
    • 2003
  • This paper presents a 1.6[kW]class single phase high power factor(HPF) pulse width modulation(PWM) boost rectifier featuring soft commutation of the active switches at zero current. It incorporates the most desirable properties of conventional PWM and soft switching resonant techniques. The input current shaping is achieved with average current mode control and continuous inductor current mode. This new PWM converter provides zero current turn on and turn off of the active switches, and it is suitable for high power applications employing insulated gate bipolar transistors(IGBT'S). The principle of operation, the theoretical analysis, a design example, and experimental results from laboratory prototype rated at 1.6[kW] with 400[Vdc] output voltage are presented. The measured efficiency and the power factor were 96.2[%] and 0.99[%], respectively, with an input current Total Harmonic Distortion(THD) equal to 3.94[%], for an input voltage with THD equal to 3.8[%], at rated load.

  • PDF

A Study on Operation Method of Protection Device for LVDC Distribution Feeder in Light Rail System (경전철용 LVDC 배전계통의 보호기기 운용 방안에 관한 연구)

  • Kang, Min-Kwan;Choi, Sung Sik;Lee, Hu-Dong;Kim, Gi-Yung;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.25-34
    • /
    • 2019
  • Recently, when a fault occurs at a long-distance point in a LVDC (low voltage direct current) distribution feeder in a light rail system, the magnitude of the current can decrease to less than that of the load current of a light rail system. Therefore, proper protection coordination method to distinguish a fault current from a load current is required. To overcome these problems, this paper proposes an optimal algorithm of protection devices for a LVDC distribution feeder in a light rail system. In other words, based on the characteristics of the fault current for ground resistance and fault location, this paper proposes an optimal operation algorithm of a selective relay to properly identify the fault current compared to the load current in a light rail system. In addition, this paper modelled the distribution system including AC/DC converter using a PSCAD/EMTDC S/W and from the simulation results for a real light rail system, the proposed algorithm was found to be a useful and practical tool to correctly identify the fault current and load current.

A NEW High Efficiency Soft-Switching Three-Phase PWM Rectifier (새로운 고효율 소프트 스위칭 3상 PWM 정류기)

  • Mun Sang-Pil;Suh Ki-Young;Lee Hyun-Woo;Kwon Soon-Kurl
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.2 s.302
    • /
    • pp.49-58
    • /
    • 2005
  • A new soft switching three-phase PWM rectifier with simple circuit configuration and high efficiency has been developed. The proposed circuit is a kind of the auxiliary resonant commutated Pole(ARCP)converter The conventional ARCP converter requires three-auxiliary reactors and six-auxiliary switches for the soft switching auxiliary circuit and for these switching elements, a gate drive circuit and a control circuit are required, resulting in high part as a disadvantage. In the main circuit proposed in this paper, the auxiliary soft switching circuit is composed of two-auxiliary reactors, two-auxiliary switches and several diodes. In addition, common use of the PWM control circuit for two-switches will make the control circuit of the auxiliary switches simple. By means of function of the soft switching auxiliary circuit, the main switching element performs zero voltage switching operation and the auxiliary switches perform the zero current switching. In this paper, the circuit configuration and the operational analysis of the proposed circuit are described at first and then, experimental results will be reported. By using a prototype with 5[kW] capacity, the conversion efficiency of maximum $98.8[\%]$ and the power factor of $99[\%]$ or higher were obtained.

Improvement of Switching Converter's Input Wave Using VIENNA Rectifier (VIENNA 정류기를 이용한 스위칭 컨버터의 입력 파형 개선)

  • Jung, Hun-Sun;Choi, Jae-Ho;Chung, Gyo-Bum
    • Proceedings of the KIEE Conference
    • /
    • 2007.04c
    • /
    • pp.201-204
    • /
    • 2007
  • This paper proposes a improvement of switching converter's input wave form using VIENNA Rectifier(three-phase three-switch three-level PWM Rectifier). VIENNA Rectifier is based on the combination of a three-phase diode bridge and dc/dc boost converter. It can be available to get sinusoidal mains current, and low-blocking voltage stress on rower transistors. In addition, it can control output voltage.

  • PDF

Analysis of current harmonics in the High PowerFactor Boost-type Rectifier (고역률 Boost-type 정류기의 고조파 분석)

  • Bae, Chang-Han;Lee, Kyo-Beum;Lee, Kwang-Won
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.1969-1972
    • /
    • 1998
  • Harmonic analysis is important for PWM rectifiers with high powerfactor. This paper describes the harmonic analysis of input current in high powerfactor boost-type rectifier. The magnitudes of the harmonics are obtained through the current wave from analysis and the effect of source reactance is also analyzed.

  • PDF