• 제목/요약/키워드: PVP insulator

검색결과 43건 처리시간 0.024초

유기박막 트랜지스터용 PVP (poly-4-vinylphenol) 게이트 절연막의 제작과 특성 (Preparation and Properties of PVP (poly-4-vinylphenol) Gate Insulation Film For Organic Thin Film Transistor)

  • 백인재;유재헉;임현승;장호정;박형호
    • 마이크로전자및패키징학회지
    • /
    • 제12권4호통권37호
    • /
    • pp.359-363
    • /
    • 2005
  • 유기 박막트랜지스터 (OTFT)를 제작하기 위하여 게이트 절연막으로서 PVP 계통의 유기막을 갖는 MIM(metal-insulator-metal)구조의 유기 절연층 소자를 제작하였다. 유기 절연층의 형은 ITO/Glass 기판위에 polyvinyl 계열의 PVP(poly-4-vinylphenol)를 용질로, PGMEA (propylene glycol monomethyl ether acetate)를 용매로 사용하여 co-polymer PVP를 제조하였다. 또한 열경화성 수지인 poly(melamine-co-formaldehyde)를 경화제로 사용하여 cross-linked PVP 절연막을 합성하였다. 유기 절연층의 전기적 특성은 co-polymer PVP 소자에 비해 cross-link 방식으로 제조된 소자에서 약 300 pA의 낮은 누설전류와 상대적으로 낮은 잡음전류의 특성을 나타내었다. 또한 cross-linked PVP 절연막에서 보다 양호한 표면형상 (거칠기)이 관찰되었으며 정전용량 값은 약 0.11${\~}$0.18 nF의 값을 나타내었다.

  • PDF

Characteristics of Pentacene Organic Thin-Film Transistors with $PVP-TiO_2$ as a Gate Insulator

  • Park, Jae-Hoon;Kang, Sung-In;Jang, Seon-Pil;Kim, Hyun-Suck;Choi, Hyoung-Jin;Choi, Jong-Sun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.II
    • /
    • pp.1301-1305
    • /
    • 2005
  • The performance of OTFT with $PVP-TiO_2$ composite, as a gate insulator, is reported, including the effect of surfactant for synthesizing the composite material. According to our investigation results, it was one of critical issues to prevent the aggregation of $PVP-TiO_2$ particles during the synthesis process. From this point of view, $PVP-TiO_2$ particles were treated using Tween80, as a surfactant, and we could reduce the aggregated $PVP-TiO_2$ clusters. As a result, the OTFT with the composite insulator showed the threshold voltage of about -8.3 V and the subthreshold slope of about 1.5 V/decade, which are the optimized properties compared to those of OTFTs with bare PVP, in this study. It is thought that these characteristic improvements are originated from the increase in the dielectric constant of the PVP-based insulator by compositing with high-k particles.

  • PDF

Pentacene TFTs and Integrated Circuits with PVP as Gate Insulator

  • Xu, Yong-Xian;Byun, Hyun-Sook;Song, Chung-Kun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2004년도 Asia Display / IMID 04
    • /
    • pp.1027-1029
    • /
    • 2004
  • In this paper, we have fabricated pentacene thin film transistors (TFTs) using polyvinylphenol (PVP) copolymer and cross-linked PVP as gate insulator on glass and plastic (PET) substrate. Depending on the density of PVP and cross-link material the performance has been changed. We obtained the best device performance with the mobility of 0.32cm2/V${\cdot}$sec and the on/off current ratio of 1.19${\times}$106 for the case of 10wt% PVP copolymer mixed with 5wt% poly (melamine-co-formaldehyde). Additionally using pentacene TFTs with the above PVP gate insulator, we fabricated the integrated circuits including inverter which produced the gain of 9.7.

  • PDF

Characteristics of Pentacene Thin Film Transistors with Stacked Organic Dielectrics for Gate Insulator

  • Kang, Chang-Heon;Lee, Jong-Hyuk;Choi, Jong-Sun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2002년도 International Meeting on Information Display
    • /
    • pp.184-187
    • /
    • 2002
  • In this work, the electrical characteristics of organic thin film transistors with the stacked organic gate insulators have been studied. PVP(Polyvinylphenol) and polystyrene were used as gate insulating materials. Both the high dielectric constant of PVP and better insulating capability of polystyrene were compensatorily adopted in two different stacking orders of PVP-polystyrene and polystyrene-PVP. The output characteristics of the device with the stacked gate insulator showed substantial improvement compared with those of the devices with either PVP or polystyrene gate insulator: Furthermore, these stacked organic gate insulators can differently affect the TFT characteristics with the stacking orders. The electrical properties of TFTs with organic gate insulators stacked in different orders are discussed.

  • PDF

PVP 게이트 절연체의 농도에 대한 펜타센 TFT의 특성 변화 (Pentacene TFT's Characteristic depending on the Density of PVP Gate Insulator)

  • 변현숙;허영헌;정현;황성범;송정근
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2004년도 하계종합학술대회 논문집(2)
    • /
    • pp.375-378
    • /
    • 2004
  • In this paper, we fabricated pantacene TFTs using PVP copolymer and cross-linked PVP as gate insulator on glass and plastic (PET) substrate. Depending on the density of PVP and poly (melamine-co-formaldehyde) the performance has been changed. We obtained the best performance with the mobility of 0.12cm2/V sec and the on/off current ratio of $1.19{\times}10^6$ for the case of $10wt\%$ PVP copolymer mixed with $5wt\%$ poly(melamine-co-formaldehyde). Additionally using OTFTs with the above PVP gate insulator, we fabricated the integrated circuit including inverter which produced the gain of 5.56 on the glass substrate and gain of 9.7 on the plastic (PET) substrate. And the threshold voltage was respectively +8V and +14v$ldots$

  • PDF

OTFT 소자의 절연층으로써 두께에 따른 PVP 층의 표면 및 전기적 특성 (The thickness effect on surface and electrical properties of PVP layer as insulator layer of OTFTs)

  • 서충석;박용섭;박재욱;김형진;윤덕용;홍병유
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.245-245
    • /
    • 2008
  • In this work, we describe the characterization of PVP films synthesized by spin-coater method and fabricate OTFTs of a bottom gate structure using pentacene as the active layer and polyvinylphenol (PVP) as the gate dielectric on Au gate electrode. We investigated the surface and electrical properties of PVP layer using an AFM method and MIM structure, and estimated the device properties of OTFTs including $I_D-V_D$, $I_D-V_G$, threshold voltage $V_T$, on/off ratio, and field effect mobility.

  • PDF

Polyethersulfone(PES) 및 유리 기판위에 제작된 PVP 게이트 절연막의 전기적 특성 (Electrical Properties of PVP Gate Insulation Film on Polyethersulfone(PES) and Glass Substrates)

  • 신익섭;공수철;임현승;박형호;장호정
    • 마이크로전자및패키징학회지
    • /
    • 제14권1호
    • /
    • pp.27-31
    • /
    • 2007
  • 휨성 유기박막트랜지스터(organic thin film transistor, OTFT)를 제작하기 위하여 게이트 절연막으로 PVP(poly-4-vinylphenol) 유기막을 이용하여 MIM (metal-insulator-metal) 구조의 캐패시터 소자를 제작하였다. 유기 절연층의 형성은 Al/PES (polyethersulfone) 기판과 ITO/Glass 기판 위에 PVP를 용질로, PGMEA(propylene glycol monomethyl ether acetate)를 용매로 사용하였다 또한 열경화성 수지인 poly(melamine-co-(ormaldehyde)를 사용하여 cross-linked PVP 절연막을 합성하여 스핀코팅법으로 소자를 형성하였다. 제작된 소자에 대해 절연막 두께와 기판 종류에 따른 전기적 특성을 조사한 결과 Al/PES 기판을 사용하였을때 누설전류는 1.3 nA로 ITO/glass 기판을 사용했을때의 27.5 nA보다 크게 개선되었다. 또한 제작된 모든 캐패시터 소자의 정전용량은 $1.0{\sim}1.2nF/cm^2$ 범위로 나타났으며 계산값과 매우 유사한 결과를 얻을 수 있었다.

  • PDF

PVP-기반 유기 절연막 형성과 OTFT 제작 (Formation of PVP- Based Organic Insulating Layers and Fabrication of OTFTs)

  • 장지근;서동균;임용규
    • 한국재료학회지
    • /
    • 제16권5호
    • /
    • pp.302-307
    • /
    • 2006
  • The formation and processing of organic insulators on the device performance have been studied in the fabrication of organic thin film transistors (OTFTs). The series of polyvinyls, poly-4-vinyl phenol(PVP) and polyvinyltoluene (PVT), were used as solutes and propylene glycol monomethyl ether acetate(PGMEA) as a solvent in the formation of organic insulators. The cross-linking of organic insulators was also attempted by adding the thermosetting material, poly (melamine-co-formaldehyde) as a hardener in the compound. The electrical characteristics measured in the metal-insulator-metal (MIM) structures showed that insulating properties of PVP layers were generally superior to those of PVT layers. Among the layers of PVP series: PVP(10 wt%) copolymer, 5 wt% cross-linked PVP(10 wt%), PVP(20 wt%) copolymer, 5 wt% cross-linked PVP(20 wt%) and 10 wt% cross-linked PVP(20 wt%), the 10 wt% cross-linked PVP(20 wt%) layer showed the lowest leakage current characteristics. Finally, inverted staggered OTFTs using the PVP(20 wt%) copolymer, 5 wt% cross-linked PVP(20 wt%) and 10 wt% cross-linked PVP(20 wt%) as gate insulators were fabricated on the polyether sulphone (PES) substrates. In our experiments, we could obtain the maximum field effect mobility of 0.31 $cm^2/Vs$ in the device from 5 wt% cross-linked PVP(20 wt%) and the highest on/off current ratio of $1.92{\times}10^5$ in the device from 10 wt% cross-linked PVP(20 wt%).

Capacitance-Voltage Characteristics of MIS Capacitors Using Polymeric Insulators

  • Park, Jae-Hoon;Choi, Jong-Sun
    • Journal of Information Display
    • /
    • 제9권2호
    • /
    • pp.1-4
    • /
    • 2008
  • In this study, we investigate the capacitance-voltage (C-V) characteristics of metal-insulator-semiconductor (MIS) capacitors consisting of pentacene, as an organic semiconductor, and polymeric insulators such as poly(4-vinylphenol) (PVP) orpolystyrene (PS) prepared by spin-coating process, to analyze the interfacial characteristics between pentacene and polymeric insulators. Compared with the device with PS, the MIS capacitor with PVP exhibited a pronounced shift in the flat-band voltage according to the bias sweep direction. This hysteric feature in the C-V characteristics is thought to be attributed to the trapped charges at the interface between pentacene and PVP owing to the hydrophilicity of PVP. From the experimental results, we can conclude that surface polarity of polymeric insulator has a critical effect on the interfacial properties, thereby affecting the bias stability of organic thin-film transistors.

폴리비닐 계열 유기절연막 형성과 특성평가 (Formation and Characterization of Polyvinyl Series Organic Insulating Layers)

  • 장지근;정진철;신세진;김희원;강의정;안종명;서동균;임용규;김민영
    • 반도체디스플레이기술학회지
    • /
    • 제5권1호
    • /
    • pp.39-43
    • /
    • 2006
  • The polyvinyl series organic films as gate insulators of thin film transistor(TFT) have been processed and characterized on the polyether sulphone (PES) substrates . The poly-4-vinyl phenol(PVP) and polyvinyl toluene (PVT) were used as solutes and propylene glycol monomethyl ether acetate(PGMEA) as a solvent in the formation of organic insulators. The cross-linking of organic insulators was also attempted by adding the thermosetting material, poly (melamine-co-formaldehyde) as a hardener in the compound. The electrical characteristics measured in the metal-insulator-metal (MIM) structures showed that insulating properties of PVP layers were generally superior to those of PVT layers. Among the layers of PVP series; copolymer PVP(10 wt%), 5wt% cross-linked PVP(10 wt%), copolymer PVP(20 wt%), 5 wt% cross-linked PVP(20 wt%) and 10 wt% cross-linked PVP(20 wt%), the 10 wt% cross-linked PVP(20 wt%) layer showed the lowest leakage current of 1.2 pA at ${\pm}10V$. The ms value of surface roughness and the capcitance per unit area are 2.41 and $1.76nF/cm^2$ in the case of 10 wt% cross-linked PVP(20 wt%) layer, respectively.

  • PDF