• 제목/요약/키워드: PVK

검색결과 102건 처리시간 0.021초

버퍼층으로 사용한 PVK의 농도 변화에 따른 유기 발광 소자의 전압-전류-휘도 특성 (Current-Voltage-Luminance Characteristics of Organic Light-Emitting Diodes with a Variation of PVK Concentration Used as a Buffer Layer)

  • 김상걸;홍진웅;김태완
    • 한국응용과학기술학회지
    • /
    • 제19권1호
    • /
    • pp.68-72
    • /
    • 2002
  • We have seen the effects of buffer layer in organic light-emitting diodes(OLEDs) using poly(N-vinylcarbazole)(PVK) depending on a concentration of PVK. Polymer PVK buffer layer was made using spin casting technique. Two device structures were fabricated; one is ITO/TPD/$Alq_{3}$/Al as a reference, and the other is ITO/PVK/TPD/$Alq_{3}$/Al to see the effects of buffer layer in organic light-emitting diodes. Current-voltage-luminance characteristics and an external quantum efficiency were measured with a variation of spin-casting rpm speeds and PVK concentration. We have obtained an improvement of external quantum efficiency by a factor of four when the PVK concentration is 0.1wt% is used. The improvement of efficiency is expected due to a function of hole-blocking of PVK in OLEDs.

PVK 유기 EL에서 Stibenequinone 유도체의 광학적 특성 (Optical properties of Stibenequinone derivatives in PVK organic electroluminescence)

  • 조종래;유정이;양종헌;신상식;손세모;정수태
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.2
    • /
    • pp.1047-1049
    • /
    • 2003
  • Stibenequinone(SQ) derivative which was electronic transportation materials in Poly(N-vinylcarbazole) (PVK)-based on organic EL and an optical characteristic of organic EL which is mentioned previously was investigated. The Photoluminescence highest pick with blending TBSQ with PVK was shifted from 439nm to 517nm. This result indicates that an energy gap of a PVK/TBSQ blended sample is less than an energy gap of PVK. According to the electrochemistry characteristic, the ionization energy(Ip) and the electro affinity(Ea) decreased from 5.79eV to 5.63eV and 2.23eV to 2.63eV, respectively.

  • PDF

Effect of Physicochemical Properties of Solvents on Microstructure of Conducting Polymer Film for Non-Volatile Polymer Memory

  • Paik, Un-Gyu;Lee, Sang-Kyu;Park, Jea-Gun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제8권1호
    • /
    • pp.46-50
    • /
    • 2008
  • The effect of physicochemical properties of solvents on the microstructure of polyvinyl carbazole (PVK) film for non-volatile polymer memory was investigated. For the solubilization of PVK molecules and the preparation of PVK films, four solvents with different physicochemical properties of the Hildebrand solubility parameter and vapor pressure were considered: chloroform, tetrahydrofuran (THF), 1,1,2,2-tetrachloroethane (TCE), and N,N-dimehtylformamide (DMF). The solubility of PVK molecules in the solvents was observed by ultravioletvisible spectroscopy. PVK molecules were observed to be more soluble in chloroform, with a low Hildebrand solubility parameter, than solvents with higher values. The aggregated size and micro-/nano-topographical properties of PVK films were characterized using optical and atomic force microscopes. The PVK film cast from chloroform exhibited enhanced surface roughness compared to that from TCE and DMF. It was also confirmed that the microstructure of PVK film has an effect on the performance of non-volatile polymer memory.

PVK계 PLED에서 발광층의 두께 변화에 따른 광학 및 전도 특성 (Optical and Conduction Properties with the Thickness Variation of the Light-emitting Layer in PVK-Based PLED)

  • 장경욱;안희철;신은철;이은혜;윤희명;정동회;안준호;이원재;김태완
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.373-374
    • /
    • 2007
  • We have fabricated polymer light-emitting diodes(PLED) in a structure of Glass/ITO/PVK/Al. Poly(N-vinylcabazole) (PVK) was deposited on the ITO glass with the spin coating method. PVK thickness is respectively 500nm, 300nm, 250nm and 200nm with the spin coter rotation speed of 2000, 3000, 4000 and 5000rpm. V-I, wavelength-transmittance, P-L and SEM of the fabricated devices were measured. From the result of P-L measurement, it was kept the optic properties of PVK raw powder when PVK thickness is 250nm. The knee-voltage of PVK PLED with 250nm thickness was 7V.

  • PDF

Poly-TPD/PVK 이중 박막 정공수송층 구조의 양자점발광다이오드 (Quantum Dot Light-Emitting Diodes with Poly-TPD/PVK Bilayer Hole Transport Layer)

  • 김현수;이도형;김바다;황보람;김창교
    • 한국전기전자재료학회논문지
    • /
    • 제32권5호
    • /
    • pp.393-398
    • /
    • 2019
  • A poly[bis(4-butypheny)-bis(phenyl)benzidine] (poly-TPD) and poly(9-vinylcarbazole) (PVK) bilayer was employed as a hole transport layer (HTL) in solution-processed CdSe/ZnS quantum dot light-emitting diodes (QLEDs). The thickness of the PVK layer spin-coated onto the poly-TPD layer, whose thickness was fixed to 40 nm, was varied, with PVK layer thicknesses of 0 nm, 35 nm, 45 nm, and 55 nm. Because the thickness of the PVK can determine the hole transport properties of the HTL, a PVK thickness that maximizes the performance of the HTL for the QLEDs was investigated. By employing the optimized PVK thickness of 45 nm, the current efficiency of the QLED exhibited a 1.74 times improvement when compared with that of the QLED with poly-TPD based HTL without PVK. This was mainly attributed to the decrease in the energy barrier between the HTL and the quantum dot (QD) emitting layer (EML).

PVK:Bu-PBD:C6 단일층 녹색발광소자의 양자효율 개선에 관한 연구 (The Study on the Improved Quantum Efficiency of the PVK:Bu-PBD:C6 Single Layer Green Light Emitting Devices)

  • 조재영;노병규;오환술
    • 한국전기전자재료학회논문지
    • /
    • 제14권11호
    • /
    • pp.922-927
    • /
    • 2001
  • Single-layer green ELs was fabricated with using molecularly-dispersed Bu-PBD into poly-N-vinylcarbazole(PVK) which has low operating voltage and high quantum efficiency. A EL cell structure of glass substrate/indium-tin-oxide/PVK:Bu-PBD:C6(∼ 100nm)/Ca(20nm)/Al(20nm) was employed with variable doping concentration. The keys to obtain high quantum efficiency was excellent film forming capability of molecularly dispersed into PVK and appropriate combination of cathode for avoiding exciplex. We obtained the turn-on voltage of 4.2V and quantum efficiency of 0.52% at 0.lmol% of C6 concentration which has been improved about a factor of 50 in comparison with the undoped cell. The PL peak wavelengths wouldn\`t be turned by changing the concentration of the C6 dopant. Green EL emission peak and FWHM were 520nm and 70nm respectively. PL emission peak was obtained at 495nm.

  • PDF

Electroluminescence characteristics of organic light-emitting diodes with TPD doped PVK as the hole transport layer

  • Shin, Y.C.;Song, J.H.;Lee, C.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.II
    • /
    • pp.1404-1407
    • /
    • 2005
  • We have fabricated organic light-emitting diodes using poly(N-vinylcarbazole)(PVK) doped with N,N'- diphenyl-N,N'-bis(3-methylphenyl)-[l,l'-biphenyl]- 4,4/-diamine (TPD) as the hole transport layer. TPD molecules act as the trapping sites in PVK and reduce the hole mobility, which can enhance the electronhole balance in the emitting layer, resulting in the enhanced device performance. We have found the optimum ratio of TPD to PVK for the EL efficiency.

  • PDF

Highly Efficient Phosphorescent White Organic Light-Emitting Devices with a Poly(N-vinylcarbazole) Host Layer

  • Kang, Min-Ki;Moon, Dae-Gyu
    • Transactions on Electrical and Electronic Materials
    • /
    • 제12권2호
    • /
    • pp.80-83
    • /
    • 2011
  • We have fabricated phosphorescent white organic light-emitting devices (WOLEDs) with a spin-coated poly(Nvinylcarbazole) [PVK] host layer. Iridium(III) bis[(4,6-difluorophenyl)-pyridinato-N,$C^{2'}$]picolinate (FIrpic), tris(2-phenylpyridine)iridium(III) [$Ir(ppy)_3$], and tris(2-phenyl-1-quinoline)iridium(III) [$Ir(phq)_3$], were used as the blue, green, and red guest materials, respectively. The PVK was mixed with FIrpic, $Ir(ppy)_3$, and $Ir(phq)_3$ molecules in a chlorobenzene solution and spin-coated in order to prepare the emission layer; 3-(4-biphenylyl)-4-phenyl-5-(4-tertbutylphenyl)-1,2,4-triazole (TAZ) was used as an electron transport material. The resultant device structure was ITO/PVK:FIrpic:$Ir(ppy)_3:Ir(phq)_3$/TAZ/LiF/Al. The electroluminescence, efficiency, and electrical conduction characteristics of the WOLEDs based on the doped PVK host layer were investigated. The maximum current efficiency of the three wavelength WOLED with the doped PVK host was 19.2 cd/A.

순환전압전류법과 일정전류전위차법을 이용한 PBD와 PVK의 이온화에너지, 전자친화도 및 전기화학적 특성에 관한 연구 (Study on The lonzation Potential, Electron Affinity and Electrochemical Property of PBO and PVK using Cyclic Voltammetry and Constant Current Potentiometry)

  • 형경우;최돈수
    • 한국전기전자재료학회논문지
    • /
    • 제16권12S호
    • /
    • pp.1273-1277
    • /
    • 2003
  • The effects of molecular structure on the redox properties are explored by the cyclic voltammetry, constant current potentiometry and spectroscopy using the thin films of organic electroluminescence materials of Poly(N-vinylcarbazole); PVK and 2- (4'-tert-butylphenyl) -5-(4"-bisphenyl) -1,3,4-oxadiazole; PBD. The UV/visible absorption maxima and band gap (E$\_$g/) show at 310nm (4.00eV) and 368nm (3.37eV) for FBD, 344nm (3.60eV) and 356nm (3.48eV) for PVK, respectively. The measured electrochemical ionization potential (IP) and electron affinity (EA) of these materials we 5.87 and 2.82eV for PBD, 5.80 and 3.17eV for PVK, respectively. The electrical band gaps are 3.05eV for PBD and 2.78eV for PVK, respectively. The electrical hole gap and electron gap with respect to the first rising potentials and the inflection potentials are obtained to be 0.39V and 0.41V for PBD, 0.25V and 0.28V for FVK, respectively.

Solution-Processed Quantum-Dots Light-Emitting Diodes with PVK/PANI:PSS/PEDOT:PSS Hole Transport Layers

  • Park, Young Ran;Shin, Koo;Hong, Young Joon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.146-146
    • /
    • 2015
  • We report the enhanced performance of poly(N-vinylcarbozole) (PVK)/poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)-based quantum-dot light-emitting diodes by inserting the polyaniline:poly (p-styrenesulfonic acid) (PANI:PSS) interlayer. The QD-LED with PANI:PSS interlayer exhibited a higher luminance and luminous current efficiency than that without PANI:PSS. Ultraviolet photoelectron spectroscopy results exhibited different electronic energy alignments of QD-LEDs with/without the PANI:PSS interlayer. By inserting the PANI:PSS interlayer, the hole-injection barrier at the QD layer/PVK interface was reduced from 1.45 to 1.23 eV via the energy level down-shift of the PVK layer. The reduced barrier height alleviated the interface carrier charging responsible for the deterioration of the current and luminance efficiency. This suggests that the insertion of PANI:PSS interlayer in QD-LEDs contributed to (i) increase the p-type conductivity and (ii) reduce the hole barrier height of QDs/PVK, which are critical factors leading to improve the efficiency of QD-LEDs.

  • PDF