• Title/Summary/Keyword: PV module surface temperature

Search Result 42, Processing Time 0.036 seconds

The analysis on long-term durability and output power characteristics of PV modules by variation on local thermal property (태양전지모듈의 국부적 열특성 변화에 따른 장기적 내구성 및 출력특성 분석)

  • Kang, Gi-Hwan;Kim, Kyung-Soo;Park, Chi-Hong;Yu, Gwon-Jong;Ahn, Hyung-Keun;Han, Deuk-Young
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.214-215
    • /
    • 2007
  • Int this paper, we studied the analysis on long-term durability and output power characteristics of PV modules by variation on local thermal property. Using 5 modules(80W), we measured the maximum output power change during the test period. And the optical transmittance of glass was compared with PV module's maximum power fluctuation. The external environment change effected contamination on the entire or local surface of module. This caused the local temperature variation of each solar cell on PV module. The specific analysis is shown in the following paper.

  • PDF

The Effect of PID Generation by Components of the PV Module (태양전지 모듈의 구성 요소가 PID 발생에 미치는 영향)

  • Kim, Han-Byul;Jung, Tae-Hee;Kang, Gi-Hwan;Chang, Hyo Sik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.10
    • /
    • pp.760-765
    • /
    • 2013
  • PID (potential induced degradation) of PV module is the degradation of module due to the high potential difference between the front surface of solar cells and ground when PV modules operate under high humidity and temperature conditions. PID is generally derived from the positive sodium ions in front glass that are accumulated on P-type solar cells. Therefore, some papers for the electrical characteristic of only front components as glass, EVA sheet, solar cell under PID generation condition were revealed. In this paper, we analyzed the different outputs of module with PID by considering the all parts of module including the back side elements such as glass, back sheet. Mini modules with one solar cell were fabricated with the various parts on front and back sided of module. To generate PID of module in a short time, the all modules were applied.1,000 V in $85^{\circ}C$, 85% RH. The outputs, dark IV curves and EL images of all modules before and after experiments were also measured to confirm the main components of module for PID generation. From the measured results, the outputs of all modules with front glass were remarkably reduced and the performances of modules with back and front glass were greatly deteriorated. We suggest that the obtained data could be used to reduce the PID phenomenon of diverse modules such as conventional module and BIPV (building integrated photovoltaic) module.

A study of high-efficiency rotating condensing hybrid solar LED street light module system (고효율 회전 집광형 하이브리드 태양광 LED 가로등 모듈 시스템 연구)

  • Min, Kyung-Ho;Jeon, Yong-Han
    • Design & Manufacturing
    • /
    • v.15 no.3
    • /
    • pp.50-55
    • /
    • 2021
  • Solar power generation, which is one of the methods of using solar energy, has a high possibility of practical implementation compared to other renewable energy power generation, and it has the characteristic that it can generate as much power as needed in necessary places. In addition, maintenance is easy, unmanned operation is possible, and power management can be performed more efficiently if operated in a hybrid method with existing electric energy. Therefore, in this study, numerical analysis using a computer program was performed to analyze the efficient operation and performance improvement of solar energy of the rotating condensing type solar LED street lamp. As a result, the two-axis tracking type could obtain 15.23 % more electricity per year than the fixed type, and additional auxiliary power generation was required for the fixed type by 19 % per year than the tracking type. As a result of computational fluid dynamics(CFD) simulation for PV module surface temperature prediction, the The surface temperature of the Photovoltaics(PV) module incident surface was predicted to be about 10℃ higher than that of the fixed type.

A Study on the Photovoltaic System Inverter Sizing (태양광발전시스템 인버터 용량 산정에 관한 연구)

  • Lee, Kyung-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.5
    • /
    • pp.804-810
    • /
    • 2016
  • Photovoltaic system construction of the module capacity in domestic is specified criteria to less than 105% of the inverter capacity. However, the modules are installed in the outdoor actual output is reduced due to factors such as the irradiation intensity, module surface temperature. Thus, it needs the capacity of the inverter to be designed according to the actual module output. In this paper, the first approach to find the actual module output is to analyze the actual PV system monitoring data. Next, four sites where the loss analysis, system utilization, inverter utilization, and the ratio of the inverter overload are performed using PVSYST software. By changing the ratio of the module capacity, the inverter capacity of the site B is confirmed 20% less than the module capacity. Site A, C, D are identified as the ratio of the inverter capacity is 10% less than the module capacity.

A Study on Pressing Conditions in the molding of Aspheric Glass Lenses for Phone Camera Module using Design of Experiments (DOE를 적용한 카메라폰 모듈용 비구면 Glass 렌즈의 가압성형조건 연구)

  • Kim, Hye-Jeong;Cha, Du-Hwan;Lee, Jun-Key;Kim, Sang-Suk;Kim, Jeong-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.8
    • /
    • pp.720-725
    • /
    • 2007
  • This study investigated the pressing conditions in the molding of aspheric glass lenses for the mega pixel phone camera module using the DOE method. Tungsten carbide (WC; Japan, Everloy Co., 002K),which contained 0.5 w% cobalt (Co), was used to build the mold. The mold surface was ultra-precision ground and polished, and its form accuracy (PV) was 0.85um in aspheric surface. We selected four factors, pressing temperature, force and time of first step, and force of second step, respectively, as the parameters of the pressing process. in order to reduce the number of experiments, we applied fractional factorial design considering the main effects and two-way interactions. The analysis results indicate that the only two main effects, the pressing temperature and the time of pressing step 1, are available for the form accuracy (PV) of the molded lens. The analysis results indicated that the best combination of the factors for lowering the form accuracy(PV) value of molded lens was to have them at their low levels.

Analysis of Temperature and Power Generation Characteristics of Bifacial BIPV System Applied into Curtain Wall (양면형 BIPV 시스템의 커튼월 적용에 따른 온도 및 발전특성 분석)

  • Kang, Jun-Gu;Kim, Yong-Jae;Kim, Jun-Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.4
    • /
    • pp.57-66
    • /
    • 2015
  • BIPV system not only produces electricity at building, but also acts as a material for building envelope. Thus, it can increase the economical efficiency of PV system by saving the cost for building materials. Bifacial solar cell can convert solar energy to electrical energy from both sides of the cell. In addition, it is designed as 3 busbar layout which is the same with ordinary mono-facial solar cells. Therefore, many of the module manufacturers can easily use the bifacial solar cells without changing their manufacturing equipments. Moreover, bifacial PV system has much potential in building application by utilizing glass-to-glass structure of PV module. However, the electrical generation of the bifacial PV module depends on the characteristics of the building surface which faces the module, as well as outdoor environment. Therefore, in order to apply the bifacial PV module to building envelope as BIPV system, its power generation characteristics are carefully evaluated. For this purpose this study focused on the electrical performance of the bifacial BIPV system through the comparative outdoor experiments. As a result, the power generation performance of the bifacial BIPV system was improved by up to 21% compared to that of the monofacial BIPV system. Therefore, it is claimed that the bifacial BIPV system can replace the conventional BIPV system to improve the PV power generation in buildings.

A Study on the Design and Power Performance of a Variable Photovoltaic Lightshelf Mounted on the Windows (창호거치 태양광발전 가변형광선반 설계 및 기초적 발전성능에 관한 연구)

  • Chung, Yu-Gun
    • KIEAE Journal
    • /
    • v.13 no.6
    • /
    • pp.105-111
    • /
    • 2013
  • This study aims to suggest the PV lightshelf and to evaluate the power performance of the photovoltaic systems easily mounted on the windows. For the study, the suggested systems consist of two parts as fixed and movable PV modules. Also, tempered glass and polycarbonate are used on the surface protection materials for solar cells of PV lightshelf. By using polycarbonate, the weight of PV lightshelf is lighter about 20%. The field tests are performed for five days by using real size models. The voltage, current and electric powers are measured as basic performances of PV lightshelf. Also, the irradiation, brightness and module surface temperature are measured as outside conditions. As results, the power performance of tempered glass PV lightshelf shows about 11(%) higher thant that of polycarbonate PV lightshelf. And the power performance shows about 5(%) higher in a horizontal system. This results could be used to develop the effective PV lightshelf in next study.

The Study on Thermal Shock Test Characteristics of Solar Cell for Long-term Reliability Test (장기 신뢰성 평가를 위한 태양전지의 열충격 시험 특성에 관한 연구)

  • Kang, Min-Soo;Kim, Do-Seok;Jeon, Yu-Jae;Shin, Young-Eui
    • Journal of Energy Engineering
    • /
    • v.21 no.1
    • /
    • pp.26-32
    • /
    • 2012
  • This study has been performed Thermal Shock test for analyze the cause of Power drop in PV(Photovoltaic) Module. Thermal Shock test condition was performed with temperature range from $-40^{\circ}C{\sim}85^{\circ}C$. One cycle time is 30min. which are consist of low and high temperature 15min. each other. The test was performed with total 500cycles. EL, I-V were conducted every 100cycle up to 500cycles. Mono Cell resulted in 8% Power drop rates in Bare Cell and 9% in Solar Cell. In the case of Multi Cell resulted in 6% Power drop rates in Bare Cell and 13% in Solar Cell. After Thermal Shock test, Solar Cell's Power drop resulted from surface damages, but in the case of Bare Cell's Power drop had no surface damages. Therefore, Bare Cell's Power drop was confirmed as according to leakage current increase by analysis of Fill Factor after Thermal Shock test. Also, Solar Cell's Power drop rates are higher than that of Bare Cell because of surface damages and consuming electric power increase. From now on, it should be considered that analyzed the reasons of Fill Factor decrease and irregular Power drop in PV module and Cell level using cross section, various conditions and test methods.

Study on the Long-term Reliability of Solar Cell by High Temperature & Humidity Test (고온고습 시험을 통한 태양전지의 장기 신뢰성에 관한 연구)

  • Kang, Min-Soo;Jeon, Yu-Jae;Kim, Do-Seok;Shin, Young-Eui
    • Journal of Energy Engineering
    • /
    • v.21 no.3
    • /
    • pp.243-248
    • /
    • 2012
  • In this study, The report analysed the characteristics of power drop and damage of surface in solar cell through high temperature and humidity test. The solar cells were tested during the 1000hr in $85^{\circ}C$ temperature and 85% humidity conditions, that excerpted standard of PV Module(KS C IEC-61215). An analysis of the cell surface through EL(Electroluminescence), the cell has partly change of surface in yearly. Single-crystalline Solar cell efficiency is decreased from 17.7% to 15.6% and decreasing rate is 11.9%. On the other hand, Poly-crystalline Solar cell efficiency is decreased from 15.5% to 14.0% and decreasing rate is 9.3%. A comparison of the fill factor for analysis of electro characteristic in yearly, Single-crystalline Solar cell efficiency is decreased from 78.7% to 78.1% and decreasing rate is 4.7%. On the other hand, Poly-crystalline Solar cell efficiency is decreased from 78.1% to 76.7% and decreasing rate is 1.8%. Single-crystalline has more bigger power drop than poly-crystalline by the silicon purity and silicon atom arrangement. Also, FF decreasing rate has more bigger drop than efficiency decreasing rate for the reason that the damage of surface by exterior environmental factor is the more influence in cell than other reason that is decreasing FF by damage of p-n junction.

The Analysis on Maximum Output Power Characteristics of Crystalline Silicon Photovoltaic Module by Change of Environmental Effects (환경변화 요인에 따른 결정질 실리콘 태양전지모듈의 최대출력 특성 분석)

  • Kang, Gi-Hwan;Kim, Kyung-Soo;Park, Chi-Hong;Yu, Gwon-Jong;Ahn, Hyung-Keun;Han, Deuk-Young
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.3
    • /
    • pp.23-28
    • /
    • 2007
  • In this study, we analyzed the maximum output power characteristics of crystalline silicon photovoltaic module by change of environmental effects. The electrical, optical and thermal property of PV modules were investigated during outdoor test period about 70 days. There was a fluctuation in maximum output power by change in transmittance caused by environment effects like rain, snow and dust. The effects of external environmental change were analyzed using climate data. Also local thermal temperature variation and transmittance imbalance on surface of PV module which might lead degradation of constituent material were detected using infrared camera. The further analysis is describe in the following paper.