DOI QR코드

DOI QR Code

The Effect of PID Generation by Components of the PV Module

태양전지 모듈의 구성 요소가 PID 발생에 미치는 영향

  • Kim, Han-Byul (Graduate School of Green Energy Technology, Chungnam National University) ;
  • Jung, Tae-Hee (Korea Institute of Energy Research, Solar Energy Research Center) ;
  • Kang, Gi-Hwan (Korea Institute of Energy Research, Solar Energy Research Center) ;
  • Chang, Hyo Sik (Graduate School of Green Energy Technology, Chungnam National University)
  • 김한별 (충남대학교 녹색에너지기술전문대학원) ;
  • 정태희 (한국에너지기술연구원 태양에너지연구단) ;
  • 강기환 (한국에너지기술연구원 태양에너지연구단) ;
  • 장효식 (충남대학교 녹색에너지기술전문대학원)
  • Received : 2013.09.03
  • Accepted : 2013.09.23
  • Published : 2013.10.01

Abstract

PID (potential induced degradation) of PV module is the degradation of module due to the high potential difference between the front surface of solar cells and ground when PV modules operate under high humidity and temperature conditions. PID is generally derived from the positive sodium ions in front glass that are accumulated on P-type solar cells. Therefore, some papers for the electrical characteristic of only front components as glass, EVA sheet, solar cell under PID generation condition were revealed. In this paper, we analyzed the different outputs of module with PID by considering the all parts of module including the back side elements such as glass, back sheet. Mini modules with one solar cell were fabricated with the various parts on front and back sided of module. To generate PID of module in a short time, the all modules were applied.1,000 V in $85^{\circ}C$, 85% RH. The outputs, dark IV curves and EL images of all modules before and after experiments were also measured to confirm the main components of module for PID generation. From the measured results, the outputs of all modules with front glass were remarkably reduced and the performances of modules with back and front glass were greatly deteriorated. We suggest that the obtained data could be used to reduce the PID phenomenon of diverse modules such as conventional module and BIPV (building integrated photovoltaic) module.

Keywords

References

  1. G. H. Kang, G. J. Yu, H. G. Ahn, and D. Y. Han, J . KIEEME, 17, 1289 (2004).
  2. G. H. Kang, G. J. Yu, H. G. Ahn, and D. Y. Han, Proc. 2004 Summer Conf. KIEEME, 5, 28 (2004).
  3. G. H. Kang, K. S. Kim, J. H. Park, G. J. Yu, H. G. Ahn, and D. Y. Han, Proc. 2007 Summer Conf. KIEEME, 12 (2007).
  4. S. Hoffman and M. Koehl, Proc. Photovolt: Res. Appl., Doi: 10.1002/pip.2238 (2012).
  5. P. Samanta, H. Huang, S. Chen, and T. Tzeng, Appl. Phys. Lett., 100, 203503 (2012). https://doi.org/10.1063/1.4711216
  6. Kempe, M. Photovoltaics International, 170 (2010).
  7. S. Pingel, O. Frank, M. Winkler, S. Daryan, T. Geipel, H. Hoehne, and J. Berghold, IEEE Photovoltaic Specialists Conference, 3753 (2010).
  8. S. Koch, D. Nieschalk, J. Berghold, S. Wendlandt, S. Krauter, and P. Grunow, 27th European Photovoltaic Solar Energy Conference (2012)
  9. J. A. del Cueto and T. J. Y. McMahon, Proc. Photovolt; Res. Appl., 10, 15 (2002). https://doi.org/10.1002/pip.401
  10. C. R. Osterwald, T. J. McMahon, and J. A. del Cueto, Sol. Energ. Mat. Sol. C., 79, 21 (2003). https://doi.org/10.1016/S0927-0248(02)00363-X
  11. J. Bauer, V. Naumann, S. Grosser, C. Hagendorf, M. Schutze, and O. Breitenstein, Phys. Status Solidi RRL, 6, 331 (2012). https://doi.org/10.1002/pssr.201206276
  12. V. V. Hadagali, Thesis, p. 22-23, B. S. Karnataka University, Florida (2000).
  13. S. Koch, C. Seidel, P. Grunow, S. Krauter, and M. Schoppa, 26th European Photovoltaic Solar Energy Conference and Exhibition, 5 (2011).
  14. M. Kontges, I. Kunze, S. Kajari-Schroder, X. Breitenmoser, and B. Bjorneklett, Sol. Energ. Mat. Sol. C., 95, 1131 (2011). https://doi.org/10.1016/j.solmat.2010.10.034