• 제목/요약/키워드: PV module efficiency

검색결과 200건 처리시간 0.028초

The Improvement of Junction Box Within Photovoltaic Power System

  • Sun, Ki-Ju;Cheon, Min-Woo
    • Transactions on Electrical and Electronic Materials
    • /
    • 제17권6호
    • /
    • pp.359-362
    • /
    • 2016
  • In the PV (Photovoltaic) power system, a junction box collects the DC voltage generated from the PV module and transfers it to the PCS (power conditioning system). The junction box prevents damage caused by the voltage difference between the serially connected PV modules and provides convenience while repairing or inspecting the PV array. In addition, the junction box uses the diode to protect modules from the inverse current when the PV power system and electric power system are connected for use. However, by using the reverse blocking diode, heat is generated within the junction box while generating electric power, which decreases the generating efficiency, and causes short circuit and electric leakage. In this research, based on the purpose of improving the performance of the PV module by decreasing the heat generation within the junction box, a junction box with a built-in bypass circuit was designed/manufactured so that a certain capacity of current generated from the PV module does not run through the reverse blocking diode. The manufactured junction box was used to compare the electric power and heating power generated when the circuit was in the bypass/non-bypass modes. It was confirmed that the electric power loss and heat generation indicated a decrease when the circuit was in the bypass mode.

진동형 히트파이프 흡열판이 결합된 하이브리드 태양광/열 시스템 (Hybrid Photovoltaic/Thermal Solar System with Pulsating Heat Pipe Type Absorber)

  • 김창희;전동환;공상운;김종수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2148-2153
    • /
    • 2007
  • The electricity conversion-efficiency of solar cell for commercial application is about 6-15%. More than 85% of the incoming solar energy is either reflected or absorbed as heat energy. Consequently, the working temperature of the photovoltaic cells increases considerably after prolonged operations and the cell's efficiency drops significantly. PV/T refers to the integration of a PV module and a solar thermal collector in a single piece of equipment. By cooling the PV module with a fluid steam like air or water, the electricity yield can be improved. At the same time, the heat pick-up by the fluid can be to support space heating or service hot-water systems. In this study, a pulsating heat pipe solar heat collector was combined with single-crystal silicon photovoltaic cell in hybrid energy-generating unit that simultaneously produced low temperature heat and heat and electricity. This experiment was investigating thermal and electrical efficiency for evaluation of a PV/T system.

  • PDF

옥상녹화와 비 옥상녹화 평지붕에 설치 된 PV모듈의 표면온도 변화 고찰 (Study on Surface Temperature Change of PV Module Installed on Green Roof System and Non-green Roof System)

  • 유동철;이응직;이두호
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 추계학술발표대회 논문집
    • /
    • pp.214-219
    • /
    • 2011
  • Today, various activities to save energy are being conducted around the world. Even in our country, carbon reduction policy is being conducted for low carbon green growth and with this movement, effort to replace energy sources by recognizing the problems on environment pollution and resource exhaustion due to the indiscrete usage of fossil fuel is being made. Therefore, active study on renewable energy is in progress as part of effort to replace the energy supply through fossil fuel and solar ray industry has rapidly developed receiving big strength of renewable energy policies. The conclusion of this study measuring the surface temperature change of single crystal and polycrystalline PV module in green roof system and non-green roof system aspect are as follows. There was approximately $4^{\circ}C$ difference in PV module temperature in green roof system and non-green roof system aspect and this has the characteristic to decrease 0.5% when the temperature rises by $1^{\circ}C$ when the front side of the module is $20^{\circ}C$ higher than the surrounding air temperature following the characteristic of solar cells. It can be concluded that PV efficiency will be come better when it is $4^{\circ}C$ lower. Also, in result of temperature measurement of the module back side, there was $5^{\circ}C$ difference of PV module installed on the PV module back side and green roof system side on the 5th, $3^{\circ}C$ on the 4th, $2^{\circ}C$ on the 5th to show decreasing temperature difference as the air temperature dropped, but is judged that there will be higher temperature difference due to the evapotranspiration latent heat effect of green roof system floor side as the temperature rises. Based on this data, it is intended to be used as basic reference to maximize efficiency by applying green roof system and PV system when building non-green roof system flat roof.

  • PDF

Analysis of Cell to Module Loss Factor for Shingled PV Module

  • Chowdhury, Sanchari;Cho, Eun-Chel;Cho, Younghyun;Kim, Youngkuk;Yi, Junsin
    • 신재생에너지
    • /
    • 제16권3호
    • /
    • pp.1-12
    • /
    • 2020
  • Shingled technology is the latest cell interconnection technology developed in the photovoltaic (PV) industry due to its reduced resistance loss, low-cost, and innovative electrically conductive adhesive (ECA). There are several advantages associated with shingled technology to develop cell to module (CTM) such as the module area enlargement, low processing temperature, and interconnection; these advantages further improves the energy yield capacity. This review paper provides valuable insight into CTM loss when cells are interconnected by shingled technology to form modules. The fill factor (FF) had improved, further reducing electrical power loss compared to the conventional module interconnection technology. The commercial PV module technology was mainly focused on different performance parameters; the module maximum power point (Pmpp), and module efficiency. The module was then subjected to anti-reflection (AR) coating and encapsulant material to absorb infrared (IR) and ultraviolet (UV) light, which can increase the overall efficiency of the shingled module by up to 24.4%. Module fabrication by shingled interconnection technology uses EGaIn paste; this enables further increases in output power under standard test conditions. Previous research has demonstrated that a total module output power of approximately 400 Wp may be achieved using shingled technology and CTM loss may be reduced to 0.03%, alongside the low cost of fabrication.

태양광 시스템의 부정합 손실 저감을 위한 모듈 전류 보상 기법 (Compensation of PV Module Current for Reduction of Mismatch Losses in PV Systems)

  • 안희욱;박기엽
    • 한국태양에너지학회 논문집
    • /
    • 제32권3호
    • /
    • pp.26-32
    • /
    • 2012
  • A current compensation method to reduce the mismatch loss in PV systems is proposed as a way to increase the power generation efficiency. A dc-dc converter is used to supply currents to irregular modules in a PV string and is powered from the string output. The converter's voltage conversion ratio is adjusted so that all the modules in the string are operated at the maximum power point. The power rating and size of the converter can be reduced since only the current difference between the regular and irregular module may be supplied. The compensated string shows very little voltage mismatch compared to other regular strings. The validity of the proposed method is verified through a simulation and experiments in a prototype PV system.

Implementation of a High Efficiency Grid-Tied Multi-Level Photovoltaic Power Conditioning System Using Phase Shifted H-Bridge Modules

  • Lee, Jong-Pil;Min, Byung-Duk;Yoo, Dong-Wook
    • Journal of Power Electronics
    • /
    • 제13권2호
    • /
    • pp.296-303
    • /
    • 2013
  • This paper proposes a high efficiency three-phase cascaded phase shifted H-bridge multi-level inverter without DC/DC converters for grid-tied multi string photovoltaic (PV) applications. The cascaded H-bridge topology is suitable for PV applications since each PV module can act as a separate DC source for each cascaded H-bridge module. The proposed phase shifted H-bridge multi-level topology offers advantages such as operation at a lower switching frequency and a lower current ripple when compared to conventional two level topologies. It is also shown that low ripple sinusoidal current waveforms are generated with a unity power factor. The control algorithm permits the independent control of each DC link voltage with a maximum power point for each string of PV modules. The use of the controller area network (CAN) communication protocol for H-bridge multi-level inverters, along with localized PWM generation and PV voltage regulation are implemented. It is also shown that the expansion and modularization capabilities of the H-bridge modules are improved since the individual inverter modules operate more independently. The proposed topology is implemented for a three phase 240kW multi-level PV power conditioning system (PCS) which has 40kW H-bridge modules. The experimental results show that the proposed topology has good performance.

건물일체형 투명 모듈의 온도 변화에 따른 발전 특성 (Generation characteristics of transparent BIPV module according to temperature change)

  • 박경은;강기환;김현일;유권종;장대호;이문희;김준태
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.210-211
    • /
    • 2007
  • Amid booming PV(photovoltaic) industry, BIPV(Building Integrated PV) is one of the best fascinating PV application technologies. To apply PV in building, variable factors should be reflected such as installation position, shading, temperature effect and so on. Especially a temperature should be considered, for it affects both electrical efficiency of PV module and heating and cooling load in building. Transparent PV modules were designed as finished material for spandrels are presented in this paper. The temperature variation of the modules with and without air gap and insulation were compared and analyzed. The results showed that the module with air gap and insulation has a much larger temperature variation than another transparent module. The temperature of the module reached by 55degree C under vertical irradiance of lower 500$W/m^2$. And the temperature difference between these modules was about 15degree C. To analyze the output performance of module according to temperature variation, separate module was manufactured and measured by sun-simulator. The results showed that 1 degree temperature rise reduced about 0.45% of output power.

  • PDF

Sunbelt 지역의 태양광발전 경제성분석 (Economic Analysis on VLS-PV System from Sunbelt Region)

  • 최봉하;박수억;이덕기;김석기;송진수
    • 신재생에너지
    • /
    • 제2권4호
    • /
    • pp.86-92
    • /
    • 2006
  • This paper analyses the economics of 50kW PV system installed in Tibet and using domestic technology. We show that this system can be expanded to very large-scale photovoltaic power generation [VLS-PV] system successfully. Based on this result, we conduct the economic analysis of 100MW VLS-PV system designed assuming that it will be installed from 2008 to 2017 in Tibet. In this analysis, future price of PV module and system are estimated based on the methodology of experience curve. In 50kW PV system, the generation cost is calculated at 567.2 won/kWh and this is lower than the one of domestic PV system. In future 100MW VLS-PV system. the generation cost is calculated at 305.4 won/kWh by declining system price. If the lifetime and efficiency of the system goes up, due to future technological improvements, the generation cost can be lowered. Moreover, under the environmental and political effect, VLS-PV system can be as competitive as the conventional energy within 20 years.

  • PDF

A Study on Core Structure of High Frequency Transformer to Improve Efficiency of Module-Integrated Converter

  • Yoo, Jin-Hyung;Jung, Tae-Uk
    • Journal of Magnetics
    • /
    • 제19권3호
    • /
    • pp.295-299
    • /
    • 2014
  • Recently, module-integrated converter (MIC) research has shown interest in small-scale photovoltaic (PV) generation. The converter is capable of efficient power generation. In this system, the high frequency transformer should be made compact, and demonstrate high efficiency characteristics. This paper presents a core structure optimization procedure to improve the efficiency of a high frequency transformer of compact size. The converter circuit is considered in the finite element analysis (FEA) model, in order to obtain an accurate FEA result. The results are verified by the testing of prototypes.