• 제목/요약/키워드: PV application

Search Result 220, Processing Time 0.023 seconds

The Experimental Study on the Application of the Insulated Glass PV Module in the Curtain Wall (단열 복층유리 PV의 커튼 월 적용 가능성에 관한 실험적 연구)

  • Oh, Min-Seok;Kim, Hway-Suh
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.3
    • /
    • pp.63-69
    • /
    • 2006
  • In order to positively cope with the international environmental regulations like UNFCCC (UN Framework Convention on Climate Change) and to overcome energy crisis Korea, who depends on import for more than 97% of required energy, needs to continuously proceed to development, spread and expansion of alternativeenergy and then, to cultivate the capacity to keep the balance of demand and supply of energy by itself. In this aspect, the technology of BIPV (Building Integrated Photovoltaic) is the field that the world is most interested in. However, at present, this technology is centered on increasing the efficiency of the module itself so it has lots of problems to be applied to buildings. Application of the integrated PV system in building external curtain wall can obtain much more generation of electric power than in roof-types whose area for installation is restricted, so it is excellent in terms of its possibility of application. Therefore, this paper intends to advance its practical use by proposing how to get integrated PV system which can be applied to building external curtain wall, and how to apply it.

Effect of Application Rate of Fused Superphosphate in Three Media Containing Polyacrylic Acid Sodium Salt on Growth and Nutrient Contents of Potted Chrysanthemum 'Lima Honey' (Polyacrylic Acid Sodium Salt를 혼합한 세 종류 상토에 용과린의 시비 수준이 포트멈 'Lima Honey'의 생육 및 무기원소 흡수에 미치는 영향)

  • Choi Jong-Myung;Wang Hyun-Jin;Choi Taik-Yong
    • Journal of Bio-Environment Control
    • /
    • v.15 no.1
    • /
    • pp.21-34
    • /
    • 2006
  • This research was conducted to determine the plant growth and nutrient contents of potted chrysanthemum 'Lima Honey' as influenced by application rate of fused superphosphate (FSSP) in three root media, peatmoss+vermiculite (1:1, v/v; PV), peatmoss+composted rice hall (1:1, v/v; PR), and peatmoss+composted pine bark (1:1, v/v; PB). All root media contained polyacrylic acid sodium salt at a rate of $4.5g L^{-1}$. The treatment of $1.4g L^{-1}$ in PV and those of $0.7g L^{-1}$ in PR and PB had the greatest fresh and dry weights in each root medium at both 43 and 80 days after transplanting. Elevated application rates of FSPP increased tissue contents of N, P, and K at both 43 and 80 days after transplanting in PV medium. However, the differences in tissue contents of N, P and K in PR medium were less significant among treatments of FSPP. The pre-planting FSPP also less affected the tissue contents of nutrients at 80 days after transplanting as compared to those at 43 days after transplanting. Elevated application rates of FSPP in PV medium increased EC and the concentrations of $NO_3,\;P_2O_5$, K, Ca, and Mg in soil solution of root media at 43 days after transplanting. The EC in PV medium at 80 days after transplanting was higher than that at 43 days after transplanting. The EC in all root media at 80 days after transplanting was not different among treatments of FSPP.

Load Pattern Considerations of The Photovoltaic Lighting System by Using Computer-based Date Acquisition System (컴퓨터기반의 DAS를 적용한 태양광 조명설비의 운용패턴 고찰)

  • 황명근;허창수
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.3
    • /
    • pp.1-10
    • /
    • 2003
  • Comparing to the conventional power systems, PV(photovoltaic) outdoor lighting system applications are evaluated as the most economical application. In this paper, we installed two PV lighting systems, which uses LPS(low pressure sodium) and electrodeless lame as their loads, and applied a computer-based data acquisition system using the Labview program for monitering purpose and effective operations, considering battery life time Also, we observed the generated power from the solar array, and energy losses comparing to its installed capacity. Because most PV system performance procedures have looked at the performance of the individual components and have deficiency of addressing how the integrated system works, we confirmed the decrease possibility of the solar amy capacity after analyzing the performance of the installed PV lighting systems.

A Study on Application of a Heat Recovery Ventilator using Photovoltaic System in School (학교 교실의 태양광발전 환기시스템 적용성 연구)

  • Jang, Yong-Sung;Suh, Seung-Jik;Hong, Sung-Hee;Yu, Kwon-Jong;Park, Hyu-Soon
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.1
    • /
    • pp.27-34
    • /
    • 2005
  • This study aims to evaluate application of a heat recovery ventilator(HRV) using photovoltaic(PV) system. To this end, we analyzed performance of a PV system, which it was evaluated by monthly power wattage and conversion efficiency according to design capacity of a HRV. The results of this study can be summarized as follows. (1) A conversion efficiency of the PCS was evaluated about 86% in rated power. (2) A maximum, minimum and average output power were respectively analyzed 49.2W, 47.3W, and 48.8W. (3) Total power wattage of 200W PV system was 211kW and it was 316kW in case of 300W PV system. (4) Insufficient electrical power of a duct and window type ventilation system was respectively calculated 133.5kW and 147.7kW.

Type-2 Fuzzy Logic Optimum PV/inverter Sizing Ratio for Grid-connected PV Systems: Application to Selected Algerian Locations

  • Makhloufi, S.;Abdessemed, R.
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.6
    • /
    • pp.731-741
    • /
    • 2011
  • Conventional methodologies (empirical, analytical, numerical, hybrid, etc.) for sizing photovoltaic (PV) systems cannot be used when the relevant meteorological data are not available. To overcome this situation, modern methods based on artificial intelligence techniques have been developed for sizing the PV systems. In the present study, the optimum PV/inverter sizing ratio for grid-connected PV systems with orientation due south and inclination angles of $45^{\circ}$ and $60^{\circ}$ in selected Algerian locations was determined in terms of total system output using type-2 fuzzy logic. Because measured data for the locations chosen were not available, a year of synthetic hourly meteorological data for each location generated by the PVSYST software was used in the simulation.

A Study on the Comparison of the PV Module Generation from Daylight Irradiation and Indoor Lighting Savings with Lighting Simulation (일사량 분석을 통한 PV모듈 발전량과 시뮬레이션을 이용한 실내 조명에너지 절감량 비교)

  • Park, Yoon-Min;Hong, Seong-Kwan;Choi, An-Seop
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.12
    • /
    • pp.17-24
    • /
    • 2010
  • Recently, BIPV system which is good enough for maintenance and functions with the shading system is being used. However BIPV system with the shading system is different from existing PV module because of using flexible PV module. Prior to the application of the BIPV system, the clearness index was calculated by Erbs et al.(1982) and analyzed for the amount of electric power generation of sky irradiance with measured data. To predict electric lighting energy savings in daylit space, electric lighting power savings with amount of PV module electric power generation was compared by using Relux 2010 software in this study.

Software Development on Power and Economic Analysis of Photovoltaic System for Building Application (건물용 태양광발전 시스템 성능 및 경제성 평가 프로그램 개발 연구)

  • Yoon, Jong-Ho;Shin, U-Cheul;Park, Jae-Wan
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • The aim of this study is to develop the photovoltaic simulation program, called SimPV, which can Predict hourly based power generation of various PV modules and conduct an intensive economic analysis with Korean situation. To establish the reliability of the PV simulation results, we adopt the PV calculation algorithm of TRNSYS program of which verification has already well approved. Extensive database for hourly weather data of Korean 16 cities, engineering data for PV system and building load profiles are established. Case study on the 2.5kW roof integrated PV system and economic analysis are presented with the developed program.

A study on the effect that the green roof has on the performance of PV module (옥상녹화가 PV모듈 발전량에 미치는 영향 고찰)

  • Yoo, Dong-Cheol;Lee, Eung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.2
    • /
    • pp.113-119
    • /
    • 2012
  • This study aims to examine the effect of the combined application of green roof and PV system on the PV efficiency by measuring the temperature and performance of PV module in order to reduce the temperature on the roof using roof planting system and determine the potential of efficient increase in solar-light power generation. In the experimental methodology, either monocrystalline or polycrystalline PV module was installed in green roof or non-green roof, and then the surface temperature of PV was measured by TR-71U thermometer and again the performance, module body temperature, and conversion efficiency were measured by MP-160, TC selector MI-540, and PV selector MI-520, respectively. As a result, the average body temperature of monocrystalline module was lower by $6.5^{\circ}C$ in green roof than in non-green roof; that of polycrystalline module was lower by $8.8^{\circ}C$ in green roof than in non-green roof. In the difference of generation, the electricity generation of monocrystalline module in green roof was 46.13W, but that of polycrystalline module was 68.82 W, which indicated that the latter produced 22.69W more than the former.

Study on variation of electrical characteristics of vertical PV module according to the change of irradiance and temperature (수직형 태양광발전모듈의 계절별 일사획득 및 온도변화에 따른 출력특성 변화에 관한 연구)

  • Park, Kyung-Eun;Kang, Gi-Hwan;Kim, Hyun-Il;Yu, Gwon-Jong;Kim, Jun-Tae
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.57-62
    • /
    • 2008
  • Building Integrated PV(BIPV) is one of the best fascinating PV application technologies. To apply PV module in building, various factors should be reflected such as installation position, shading, temperature, and so on. Especially the installation condition should be considered, for the generation performance of PV module is changed or the generation loss is appeared according to installation position, method, and etc. This study investigates variation of electrical characteristics of a PV module according to the change of irradiance and temperature. From this experimental study, we confirmed that the irradiance, the temperature variation and the generation performance of a PV module were appeared differently according seasonal variation. Actually the PV module installed in building facade showed high-generation performance in winter.

  • PDF

Analysis of Thermal and Optical Characteristic of Semi-transparent Module according to Various Types of the Backside Glass (후면 유리 종류에 따른 투과형 태양광발전모듈의 열 및 광 특성 분석)

  • Park, Kyung-Eun;Kang, Gi-Hwan;Kim, Hyun-Il;Kim, Kyung-Su;Yu, Gwon-Jong;Kim, Jun-Tae
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.263-268
    • /
    • 2008
  • Building Integrated PV(BIPV) is one of the best fascinating PV application technologies. To apply PV module in building, various factors should be reflected such as installation position, shading, temperature, and so on. Especially a temperature should be considered, for it affects both electrical efficiency of a PV module and heating/cooling load in a building. This study investigates a semitransparent PV module that is designed as finished material for windows. Therefore it needs to considerate about the optical characteristics of the transparent module. It reports the effect of thermal and optical characteristics of the PV module on generation performance. The study was performed by measuring sun spectrum and luminance through the PV modules and by monitoring the temperature and experiment. The results showed that 1 degree temperature rise reduced about 0.48% of output power.

  • PDF