• Title/Summary/Keyword: PV application

Search Result 220, Processing Time 0.02 seconds

Modeling and Analysis of Modified Active Frequency Drift Method (개선된 AFD기법의 모델링 및 분석)

  • An, Jin-Ung;Yu, Gwon-Jong;Choy, Ich;Choi, Ju-Yeop;Lee, Ki-Ok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.145-151
    • /
    • 2011
  • In this paper, among the active islanding detection techniques, the modified active frequency drift method was analyzed, which is relatively easy to apply to the single-phase grid-connected PV PCS. The existing designs for turbulences in these applications were empirically conducted, and do not have sufficient reliability and performance. Therefore, three application forms of the modified active frequency drift technique were modeled, based on which the proper magnitude of turbulence, which is the frequency acceleration component, was calculated. Using the results, the magnitude of and injection method for turbulence for ensuring the islanding detection performance and improving the output power quality were proposed, and they were verified via simulations and experiment to prove that the reliable islanding detection technique can be developed merely by measuring the basic output power quality, without the need for expensive islanding simulation equipment.

A Study on the Solar Radiation Analysis for Components and Classified Wavelength in Korea (국내 태양광자원의 성분 및 파장별 분석에 관한 연구)

  • Jo, Dok-Ki;Yun, Chang-Yeol;Kim, Kwang-Deuk;Kang, Young-Heack
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.2
    • /
    • pp.35-41
    • /
    • 2012
  • Knowledge of the solar radiation components and classified wavelength data are essential for modeling many solar photovoltaic systems. This is particularly the case for applications that concentrate the incident energy to attain high photo-dynamic efficiency achievable only at the higher intensities. In order to estimate the performance of concentrating PV systems, it is necessary to know the intensity of the beam radiation, as only this components can be concentrated, and The new PV cell can generate electricity from ultraviolet and infrared light as well as visible light. The Korea Institute of Energy Research(KIER) has began collecting solar radiation components data since January, 1988, and solar radiation classified wavelength data since November, 2008. KIER's solar radiation components and classified wavelength data will be extensively used by concentrating PV system users or designers as well as by research institutes. It is essential to utilize the solar radiation data as application and development of solar energy system increase. Consider able efforts have been made constructing a standard data base system from measure data.

Cascaded H-Bridge Five Level Inverter for Grid Connected PV System using PID Controller

  • Sivagamasundari, M.S.;Mary, P. Melba
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.4
    • /
    • pp.451-462
    • /
    • 2016
  • Photovoltaic energy conversion becomes main focus of many researches due to its promising potential as source for future electricity and has many advantages than the other alternative energy sources like wind, solar, ocean, biomass, geothermal etc. In Photovoltaic power generation multilevel inverters play a vital role in power conversion. The three different topologies, diode-clamped (neutral-point clamped) inverter, capacitor-clamped (flying capacitor) inverter and cascaded h-bridge multilevel inverter are widely used in these multilevel inverters. Among the three topologies, cascaded h-bridge multilevel inverter is more suitable for photovoltaic applications since each pv array can act as a separate dc source for each h-bridge module. This paper presents a single phase Cascaded H-bridge five level inverter for grid-connected photovoltaic application using sinusoidal pulse width modulation technique. This inverter output voltage waveform reduces the harmonics in the generated current and the filtering effort at the input. The control strategy allows the independent control of each dc-link voltages and tracks the maximum power point of PV strings. This topology can inject to the grid sinusoidal input currents with unity power factor and achieves low harmonic distortion. A PID control algorithm is implemented in Arm Processor LPC2148. The validity of the proposed inverter is verified through simulation and is implemented in a single phase 100W prototype. The results of hardware are compared with simulation results. The proposed system offers improved performance over conventional three level inverter in terms of THD.

Power Prediction of P-Type Si Bifacial PV Module Using View Factor for the Application to Microgrid Network (View Factor를 고려한 마이크로그리드 적용용 고효율 P-Type Si 양면형 태양광 모듈의 출력량 예측)

  • Choi, Jin Ho;Kim, David Kwangsoon;Cha, Hae Lim;Kim, Gyu Gwang;Bhang, Byeong Gwan;Park, So Young;Ahn, Hyung Keun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.3
    • /
    • pp.182-187
    • /
    • 2018
  • In this study, 20.8% of a p-type Si bifacial solar cell was used to develop a photovoltaic (PV) module to obtain the maximum power under a limited installation area. The transparent back sheet material was replaced during fabrication with a white one, which is opaque in commercial products. This is very beneficial for the generation of more electricity, owing to the additional power generation via absorption of light from the rear side. A new model is suggested herein to predict the power of the bifacial PV module by considering the backside reflections from the roof and/or environment. This model considers not only the frontside reflection, but also the nonuniformity of the backside light sources. Theoretical predictions were compared to experimental data to prove the validity of this model, the error range for which ranged from 0.32% to 8.49%. Especially, under $700W/m^2$, the error rate was as low as 2.25%. This work could provide theoretical and experimental bases for application to a distributed and microgrid network.

A Study of the Architectural Characteristic Depending upon the Module in the BIPV System (BIPV 시스템에서의 모듈 종류에 따른 건축적 특성 연구 - 채광형 시스템을 중심으로 -)

  • Lee, Eung-Jik;Lee, Chung-Sik
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.196-202
    • /
    • 2008
  • Effective climate protection is a most important tasks of our time. The BIPV is one of the most interesting and promisingly possibilities of an active use of solar energy at the building. In this study it was analyzed by the case study the function of the requirement of the BIPV-module as building material and this architectural characteristic according to the kind of the module. Therefore the goal of this study is to get securing the application information of BIPV as windowpane. BIPV modules are manufactured in the form of G/G. In the case of the crystal type the Transparent and the light Transmission is to be adjusted by the spacer attitude of the cell. Although this type could not be optimal for light effect of indoors because of the inequality of shade, the moving shade play makes a dramatic Roomimage by the run of sun. The application of this type would be for canopy, window or roof in the corridor or resounds. With amorphous the type it is to be manufactured simply largely laminar, and thus that will shorten building process. There is a relatively good economy to use and to the window system easily. After the production technology is easy the transparency of the modules to adjust, and the module shows to a high degree constant characteristics of light permeability and transparency. Without mottle of module shade is good the use for the window or roof glazing of office, library, classroom, etc. to adapt. The BIPV modules took generally speaking a function as building material to the daylight use, shading, isolation and also to the sight. That means that BIPV modules have as multifunctional system to sustainable architecture good successes and they are at the same time as Design element for architecture effectively.

  • PDF

The Developement of Smart TV and Smart Home Platform based on HTML5 (HTML5를 기반으로 한 스마트 TV와 스마트 홈용 플랫폼 개발)

  • Kim, Gwang-Jun;Kang, Ki-Woong;Han, Kyu-Cheol;Jang, Seung-Jin;Yoon, Chan-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.9
    • /
    • pp.991-998
    • /
    • 2014
  • Embedded System operates hardware installed like processor, memory device, various input/output devices and software to control them. This thesis presents MPU module and Base board which are efficient industrial control through design and manufacture as developing S5PV210 CPU of SAMSUNG used by ARM Cortex-A8 based on Android which is Open mobile platform is installed to embedded system. Data for temperature and humidity which are received by CAN communication module proved the suitability and validity for the embedded platform design as implementing application program employed the native App with Linux Kernel based on the Android OS and application of HTML5.

The Advanced Case Study for Investigation on Application of BIPV on Tall Building (초고층빌딩의 BIPV 적용성 검토를 위한 선진 사례 조사)

  • Lee, Jong-Min;Seok, Ho-Tae;Yang, Jeong-Hoon
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.155-160
    • /
    • 2009
  • The increasingly high prices for oil, the exhaustion of fossil fuels as well as concern about global warming are driving rapid growth of alternative sources of energy in the world. The active solution for global environment and exhaustion of energy sources is to develop and popularize the technologies to use natural energy such as sunlight, wind, and water. PV(Photovoltaic) modules are efficient devices that has been considered a logical material for use in buildings. Recent advanced BIPV(Building Integrated PV) technology have rapidly made PVs suitable for direct integration into construction in the world. Recently, building has been higher and higher. Tall buildings have many advantages for BIPV such as wide facade area and no shading effect by the surrounding buildings. However. BIPV has not been applied for tall building facade yet. Therefore, the purpose of the research is to develop suitable BIPV for tall buildings and to put these technologies to practical use. Therefore, the purpose of the study is to investigate unification of BIPV to curtain wall to apply BIPV on tall building through research into advanced application of overseas BIPV cases.

  • PDF

Pine Needle Extract Applicable to Topical Treatment for the Prevention of Human Papillomavirus Infection

  • Lee, Hee-Jung;Park, Mina;Choi, HeeJae;Nowakowska, Aleksandra;Moon, Chiung;Kwak, Jong Hwan;Kim, Young Bong
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.1
    • /
    • pp.137-143
    • /
    • 2021
  • Most cervical cancers are associated with high-risk human papillomavirus (HPV) infection. Currently, cervical cancer treatment entails surgical removal of the lesion, but treatment of infection and preventing tissue damage are issues that still remain to be addressed. Herbal medicine and biological studies have focused on developing antiviral drugs from natural sources. In this study, we analyzed the potential antiviral effects of Pinus densiflora Sieb. et Zucc. leaf extracts against HPV. The pine needle extracts from each organic solvent were analyzed for antiviral activity. The methylene chloride fraction (PN-MC) showed the highest activity against HPV pseudovirus (PV). The PN-MC extract was more effective before, rather than after treatment, and therefore represents a prophylactic intervention. Mice were pre-treated with PN-MC via genital application or oral administration, followed by a genital or subcutaneous challenge with HPV PV, respectively. The HPV challenge results showed that mice treated via genital application exhibited complete protection against HPV. In conclusion, PN-MC represents a potential topical virucide for HPV infection.

Application of Bacterial Endophytes to Control Bacterial Leaf Blight Disease and Promote Rice Growth

  • Ooi, Ying Shing;Nor, Nik M.I. Mohamed;Furusawa, Go;Tharek, Munirah;Ghazali, Amir H.
    • The Plant Pathology Journal
    • /
    • v.38 no.5
    • /
    • pp.490-502
    • /
    • 2022
  • Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial leaf blight (BLB) disease in rice (Oryza sativa L.) and it is among the most destructive pathogen responsible for severe yield losses. Potential bacterial biocontrol agents (BCAs) with plant growth promotion (PGP) abilities can be applied to better manage the BLB disease and increase crop yield, compared to current conventional practices. Thus, this study aimed to isolate, screen, and identify potential BCAs with PGP abilities. Isolation of the BCAs was performed from internal plant tissues and rhizosphere soil of healthy and Xoo-infected rice. A total of 18 bacterial strains were successfully screened for in vitro antagonistic ability against Xoo, siderophore production and PGP potentials. Among the bacterial strains, 3 endophytes, Bacillus sp. strain USML8, Bacillus sp. strain USML9, and Bacillus sp. strain USMR1 which were isolated from diseased plants harbored the BCA traits and significantly reduced leaf blight severity of rice. Simultaneously, the endophytic BCAs also possessed plant growth promoting traits and were able to enhance rice growth. Application of the selected endophytes (BCAs-PGP) at the early growth stage of rice exhibited potential in suppressing BLB disease and promoting rice growth.

Numerical Analysis of Si-based Photovoltaic Modules with Different Interconnection Methods

  • Park, Chihong;Yoon, Nari;Min, Yong-Ki;Ko, Jae-Woo;Lim, Jong-Rok;Jang, Dong-Sik;Ahn, Jae-Hyun;Ahn, Hyungkeun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.2
    • /
    • pp.103-111
    • /
    • 2014
  • This paper investigates the output powers of PV modules by predicting three unknown parameters: reverse saturation current, and series and shunt resistances. A theoretical model using the non-uniform physical parameters of solar cells, including the temperature coefficients, voltage, current, series and shunt resistances, is proposed to obtain the I-V characteristics of PV modules. The solar irradiation effect is included in the model to improve the accuracy of the output power. Analytical and Newton methods are implemented in MATLAB to calculate a module output. Experimental data of the non-uniform solar cells for both serial and parallel connections are used to extend the implementation of the model based on the I-V equation of the equivalent circuit of the cells and to extend the application of the model to m by n modules configuration. Moreover, the theoretical model incorporates, for the first time, the variations of series and shunt resistances, reverse saturation current and irradiation for easy implementation in real power generation. Finally, this model can be useful in predicting the degradation of a PV system because of evaluating the variations of series and shunt resistances, which are critical in the reliability analysis of PV power generation.