• Title/Summary/Keyword: PTCR effect

Search Result 69, Processing Time 0.029 seconds

Effect of the Sintering Temperature on Electrical Properties of Porous Barium-strontium Titanate Ceramics

  • Kim, Jun-Gyu;Sim, Jae-Hwang;Cho, Won-Seung
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.1
    • /
    • pp.5-10
    • /
    • 2003
  • Porous barium-strontium titanate ceramics were fabricated by adding corn- or potato-starch (are referred to as starch). The effect of sintering temperature on the microstructure and electrical properties of the porous ceramics was investigated. The room-temperature electrical resistivity of the barium-strontium titanate ceramics decreased with sintering temperature. The porosity and pore size were decreased and the grain size was increased with increasing the sintering temperature. The porosity and grain size of the barium-strontium titanate ceramics with corn-starch sintered at 1300 and 1450$^{\circ}C$ were 28.5, 22.6% and 3.2, 6.2 $\mu\textrm{m}$, respectively. The average pore sizes of the barium-strontium titanate ceramics with corn-starch sintered at 1300, 1400 and 1450$^{\circ}C$ were 0.5, 0.3 and 0.2 $\mu\textrm{m}$, respectively. The decrease in the room-temperature resistivity with increasing sintering temperature is attributed mainly due to the increase of grain size and the decrease of the electrical barrier height of grain boundaries as well as the partial decrease of porosity.

Effect of In Situ YAG on Microstructure and Properties of the Pressureless-Sintered $SiC-ZrB_2$ Electroconductive Ceramic Composites (상압소결(常壓燒結)한 $SiC-ZrB_2$ 전도성(電導性) 복합체(複合體)의 미세구조(微細構造)와 특성(特性)에 미치는 In Situ YAG의 영향(影響))

  • Shin, Yong-Deok;Ju, Jin-Young
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.11
    • /
    • pp.505-513
    • /
    • 2006
  • The present study investigated the influence of the content of $Al_2O_3+Y_2O_3$ sintering additives on the microstructure, mechanical and electrical properties of the pressureless-sintered $SiC-ZrB_2$ electroconductive ceramic composites. Phase analysis of composites by XRD revealed mostly of ${\alpha}-SiC(4H),\;ZrB_2,\;{\beta}-SiC(15R)$ and In Situ $YAG(Al_5Y_3O_{12})$. The relative density and the flexural strength showed the highest value of 86.8[%] and 203[Mpa] for $SiC-ZrB_2$ composite with an addition of 8[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid at room temperature respectively. Owing to crack deflection and crack bridging of fracture toughness mechanism, the fracture toughness showed 3.7 and $3.6[MPa{\cdot}m^{1/2}]\;for\;SiC-ZrB_2$ composites with an addition of 8 and 12[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid at room temperature respectively. Abnormal grain growth takes place during phase transformation from ${\beta}-SiC\;into\;{\alpha}-SiC$ was correlated with In Situ YAG phase by reaction between $Al_2O_3\;and\;Y_2O_3$ additives during sintering. The electrical resistivity showed the lowest value of $6.5{\times}10^{-3}[({\Omega}{\cdot}cm]$ for the $SiC-ZrB_2$ composite with an addition of 8[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid at room temperature. The electrical resistivity of the $SiC-ZrB_2$ composites was all positive temperature coefficient(PTCR) in the temperature ranges from $25[^{\circ}C]\;to\;700[^{\circ}C]$. The resistance temperature coefficient showed the highest value of $3.53{\times}10^{-3}/[^{\circ}C]\;for\;SiC-ZrB_2$ composite with an addition of 8[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid in the temperature ranges from $25[^{\circ}C]\;to\;700[^{\circ}C]$. In this paper, it is convinced that ${\beta}-SiC$ based electroconductive ceramic composites for heaters or ignitors can be manufactured by pressureless sintering.

Effect According to Additive (Bi0.5Na0.5)TiO3 in BT-BNT System (BT-BNT계에서 (Bi0.5Na0.5)TiO3 첨가에 따른 효과)

  • Lee, Mi-Jai;Paik, Jong-Hoo;Kim, Sei-Ki;Kim, Bit-Nam;Lee, Woo-Yong;Lee, Kyung-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.1
    • /
    • pp.35-40
    • /
    • 2009
  • Lead free positive temperature coefficient of resistivity (PTCR) ceramics based on $BaTiO_3-(Bi_{0.5}Na_{0.5})TiO_3$ solid solution were prepared by a conventional solid state reaction method. The phase structure was showed single phase with perovskite structure regardless calcinations temperature and $Ba_{1-x}(Bi_{0.5}Na_{0.5})_xTiO_3$ structure was transformed from tetragonal to orthorhombic phase at $x{\geq}0.15$ mole. The XRD peaks with $45^{\circ}{\sim}46^{\circ}$ shifted in right the influence of crystal structure change and the intensity of peak was decreased with additive $(Bi_{0.5}Na_{0.5})TiO_3$. The curie temperature risen with additive $(Bi_{0.5}Na_{0.5})TiO_3$ but disappeared for $(Bi_{0.5}Na_{0.5})TiO_3$ addition more than 0.15 mole in TMA. In relative permittivity, the curie temperature by the transform of ferroelectric phase risen with additive $(Bi_{0.5}Na_{0.5})TiO_3$ but decreased in relative permittivity. Also, the peak of new curie temperature showed the sample containing $0.025{\sim}0.045$ mole of $(Bi_{0.5}Na_{0.5})TiO_3$ near $70^{\circ}C$ caused by phase transform from ferroelectric to ferroelectric and the peak of new curie temperature disappeared at 0.045 mole of $(Bi_{0.5}Na_{0.5})TiO_3$. In our study, it was found that the PTCR in $BaTiO_3-(Bi_{0.5}Na_{0.5})TiO_3$ system was possible for $0{\sim}0.025$ mole of $(Bi_{0.5}Na_{0.5})TiO_3$ and the maximum curie temperature by phase transition showed about at $145^{\circ}C$.

Effect of Sintering Temperature on Properties of $\beta$-SiC-$ZrB_2$ Composites Manufactured by Pressureless Sintering (상압소결법에 의해 제조한 $\beta$-SiC-$ZrB_2$ 복합체의 특성에 미치는 소결온도의 영향)

  • Ju, Jin-Young;Shin, Yong-Deok
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1436-1438
    • /
    • 2001
  • The $\beta$-SiC + $ZrB_2$ ceramic electroconductive composites were pressureless-sintered and annealed by adding 12wt% $Al_2O_3$ + $Y_2O_3$ (6 : 4wt%) powder as a function of sintering temperature. The relative density showed the highest value of 81.1% at 1900$^{\circ}C$ sintering temperature. The phase analysis of the composites by XRD revealed of $\alpha$-SiC(6H), $TiB_2$, $Al_5Y_2O_{12}$ and $\beta$-SiC(15R). Flexural strength showed the highest value of 230 MPa for composites sintered at 1900$^{\circ}C$. The vicker's hardness and the fracture toughness showed the highest value of increased with increasing sintering temperature and showed the highest of 9.88 GPa and 6.05 $MPa{\cdot}m^{1/2}$ at 1900$^{\circ}C$. The electrical resistivity was measured by the Pauw method from 25$^{\circ}C$ to 700$^{\circ}C$. The electrical resistivity of the composites showed the PTCR (Positive Temperature Coefficient Resistivity).

  • PDF

A study on the relationship of various characterizations for undoped ZnO thin films (Undoped ZnO 박막의 다양한 특성의 상관관계에 대한 연구)

  • Baek, Kyung-Hyun;Park, Hyeong-Sik;Jang, Kyung-Soo;Jung, Sung-Wook;Ryu, Kyung-Yul;Yun, Eui-Jung;Yi, J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.147-147
    • /
    • 2010
  • PTC Thermistors specimens were fabricated by added $MnO_2$ as donors, and $Nb_2O_5$ as acceptors and sintered $1250^{\circ}C$/2hrs. Average grain size decreased with increased in added $MnO_2$, and increased with added in $Nb_2O_5$. But, appeared liquid phase as $Bi_2O_3$ and $TiO_2$, affect to grain growth. XRD result, peak strength waslowed then crystallization not well, but, secondary phase were not showed all specimens. All specimens resistance were so high, about $40M{\Omega}$ over, couldn't measured to those resistance and doesn't appear PTCR effect.

  • PDF

Treatment of rolling cooling waste water by superconductor HGMS method (초전도 자기분리에 의한 냉연공정 폐수처리)

  • Kim, Tae-Hyung;Ha, Dong-Woo;Oh, Sang-Soo;Kim, Young-Hun;Ha, Tae-Wook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.295-295
    • /
    • 2008
  • This study introduced waste water treatment method applied superconductor HGMS(High Gradient Magnetic Separation). HGMS method treat high efficient method for various waste water. we have surveyed superconducting magnetic separation technology and reviewed the status of related industries using applied superconductivity. We fabricated the prototypes of magnetic matrix filter consisting of stainless steel mesh, which is a core component in the magnetic separation system. In our basic preliminary experiment using HGMS, it was made clear that the fine para-magnetic particles in the rolling colling wasted water obtained from rolling process of POSCO can be separated with high efficiency.

  • PDF

$BaTiO_3-(Bi_{1/2}Na_{1/2})TiO_3$ system for PTC Thermistor (PTC 써미스터를 위한 $BaTiO_3-(Bi_{1/2}Na_{1/2})TiO_3$)

  • Park, Yong-Jun;Lee, Young-Jin;Paik, Jong-Hoo;Kim, Dae-Joon;Lee, Woo-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.91-92
    • /
    • 2007
  • An anomalous positive temperature coefficient of electrical resistivity (PTCR) was investigated in a ferroelectric lead-free perovskite-type compound $(Bi_{0.5}Na_{0.5})TiO_3$ within $BaTiO_3$-based solid solution ceramics. The effect of $Nb_2O_5$ content on the electrical properties and the microstructure of (1 - x) $BaTiO_3-x\;(Bi_{0.5}Na_{0.5})TiO_3$ (BNT) ceramics made using a conventional mixed oxide process also has been studied. The Curie temperature was obviously increased with the increasing of $(Bi_{0.5}Na_{0.5})TIO_3$ content. The Nb - doped BNT ceramics (x=0.01) display low resistivity values of $10^{1{\circ}}C-10^{2{\circ}}C$ ohm.cm at room temperature and the Curie Temperature of $T_c=160^{\circ}C$.

  • PDF

Effect of Porosity on the Fracture Toughness and Electrical Conductivity of Pressureless Sintered ${\beta}-SiC-ZrB_2$ Composites (무가압소결(無加壓燒結)한 ${\beta}-SiC-ZrB_2$ 복합체(複合體)의 파괴인성(破壞忍性)과 전기전도성(電氣傳導性)에 미치는 기공(氣孔)의 영향)

  • Shin, Yong-Deok;Kwon, Ju-Sung
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.847-849
    • /
    • 1998
  • The effect of $Al_{2}O_{3}$ additives on the microstructure, mechanical and electrical properties of ${\beta}$-SiC+39vol.%$ZrB_2$ electroconductive ceramic composites by pressureless sintering were investigated. The ${\beta}$-SiC+39vol.%$ZrB_2$ ceramic composites were pressureless sintered by adding 4, 8, 12wt.% $Al_{2}O_{3}$ powder as a liquid forming additives at $1950^{\circ}C$ for 1h. Phase analysis of composites by XRD revealed mostly of $\alpha$-SiC(6H), $ZrB_2$ and weakly $\alpha$-SiC(4H), $\beta$-SiC(15R) phase. The relative density of composites was lowered by gaseous products of the result of reaction between $\beta$-SiC and $Al_{2}O_{3}$ therefore, porosity was increased with increased $Al_{2}O_{3}$ contents. The fracture toughness of composites was decreased with increased $Al_{2}O_{3}$ contents, and showed the maximum value of $1.4197MPa{\cdot}m^{1/2}$ for composite added with 4wt.% $Al_{2}O_{3}$ additives. The electrical resistivity of ${\beta}$-SiC+39vol.%$ZrB_2$ electroconductive ceramic composite was increased with increased $Al_{2}O_{3}$ contents, and showed positive temperature coefficient resistance (PTCR) in the temperature from $25^{\circ}C$ to $700^{\circ}C$.

  • PDF

Effect of Re-oxidation on the Electrical Properties of Mutilayered PTC Thermistors (적층 PTC 써미스터의 전기적 특성에 대한 재산화의 영향)

  • Chun, Myoung-Pyo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.2
    • /
    • pp.98-103
    • /
    • 2013
  • The alumina substrates that Ni electrode was printed on and the multi-layered PTCR thermistors of which composition is $(Ba_{0.998}Ce_{0.002})TiO_3+0.001MnCO_3+0.05BN$ were fabricated by a thick film process, and the effect of re-oxidation temperature on their resistivities and resistance jumps were investigated, respectively. Ni electroded alumina substrate and the multi-layered PTC thermistor were sintered at $1150^{\circ}C$ for 2 h under $PO_2=10^{-6}$ Pa and then re-oxidized at $600{\sim}850^{\circ}C$ for 20 min. With increasing the re-oxidation temperature, the room temperature resistivity increased and the resistance jump ($LogR_{290}/R_{25}$) decreased, which seems to be related to the oxidation of Ni electrode. The small sized chip PTC thermistor such as 2012 and 3216 exhibits a nonlinear and rectifying behavior in I-V curve but the large sized chip PTC thermistor such as 4532 and 6532 shows a linear and ohmic behavior. Also, the small sized chip PTC thermistor such as 2012 and 3216 is more dependent on the re-oxidation temperature and easy to be oxidized in comparison with the large sized chip PTC thermistor such as 4532 and 6532. So, the re-oxidation conditions of chip PTC thermistor may be determined by considering the chip size.

Effect of the Re-oxidation Times on the PTC Properties of $BaTiO_3$ with Sm Contents (Sm 함량을 달리한 $BaTiO_3$계의 재산화 시간에 따른 PTC 특성 변화)

  • Baek, Seung-Kyoung;Hong, Youn-Woo;Shin, Hyo-Soon;Yeo, Dong-Hun;Kim, Jong-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.179-179
    • /
    • 2008
  • $BaTiO_3$를 기본조성으로 하는 PTC 써미스터는 Curie 온도이상에서 저항이 급격히 상승하는 산화물 반도체 세라믹이다. 이러한 성질을 이용하여 degaussing 소자, 정온 발열체, 온도센서, 전류 제한소자 등 상업적으로 여러 분야에서 연구되고 있다. 또한 원가절감 등을 위하여 Ni 내부전극을 사용하여 환원 분위기에서 소결하는 칩 타입에 대한 연구가 진행되고 있다. 본 연구에서는 Sm 함량(0.1at%~1.0at%)을 달리한 $BaTiO_3$(Si, Mn, Ca) 계를 선택하여 3%$H_2/N_2$ 분위기에서 1200~$1260^{\circ}C$, 2h 소결한 후 공기 중에서 재산화 처리하고 재산화 시간에 따른 PTC 특성 변화에 대하여 고찰하였다. 재산화 온도와 시간은 각각 $800^{\circ}C$와 0.5h~10h으로 하였다. Sm 함량을 달리하여 환원 분위기에서 소결한 시편의 미세구조와 PTC 특성과의 상관관계를 관찰한 결과, 소결온도가 낮을수록 PTC 특성은 좋아졌으며, 상온 비저항은 Sm 함량이 높아질수록 낮아졌다. 또한 Sm 함량이 높아질수록 jumping ratio$(R_{max}/R_{25^{\circ}C})$는 낮아졌다. 재산화 시간에 따른 PTC 특성은 다소 떨어졌지만 소결온도에 따라 달리 나타났다. Jumping ratio$(R_{max}/R_{25^{\circ}C})$는 Sm을 0.7 at% 첨가한 계에서 재산화를 1시간 처리한 시편에서 가장 우수하였다.

  • PDF