• Title/Summary/Keyword: PLL IC

Search Result 35, Processing Time 0.023 seconds

Study on the Design of S/PDIF BC which Can Operate without PLL (PLL없이 동작하는 S/PDIF IC 설계에 관한 연구)

  • Park Ju-Sung;Kim Suk-Chan;Kim Kyoung-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.1
    • /
    • pp.11-20
    • /
    • 2005
  • In this paper, we deal with the research about a S/PDIF (Sony Philips Digital Interface) receiver which can operate without PLL (Phase Locked Loop) circuits. Although a S/PDIF receiver is used in most audio devices and audio processors in these days. yet there are only few domestic researches about S/PDIF. Currently used commercial DACs (Digital-to-Analog Converters) which can decode S/PDIF signals, have a PLL circuit inside them. The PLL makes it possible to extract clock information from S/PDIF digital signal and to synchronize a clock signal with input signals. But the PLL circuit makes many diffculties in designing the SOC (System On Chips) of VLSIs (Vew Large Scale Integrated Ciruits) because it is an "analog circuit". We proposed a S/PDIF receiver which doesn't have PLL circuits and only has Pure digital circuits. The key idea of the proposed S/PDIF receiver. is to use the ratio between a 16 MHz basic input clock and S/PDIF signals. After having decoded hundreds thousands S/PDIF inputs, it went to prove that a S/PDIF receiver can be designed with pure digital circuits and without any analog circuits such as PLL circuits. We have confidence that the proposed S/PDIF receiver can be used as an IP (Intellectual Property) for the SOC design of the digital circuits.

155.52 Mbps High Performance CMOS Receiver for STM-1 Application (STM-1급 155.52 Mbps 고성능 CMOS 리시버의 구현)

  • 채상훈;정희범
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.6B
    • /
    • pp.1074-1079
    • /
    • 1999
  • A high performance CMOS receiver for 155.52 Mbps STM-1 digital communication has been designed and fabricated. The ASIC operates properly with 155.52 MHz clock frequency in case of the data loss due to some system error such as transmission line open or data transfer fail. Also it operates properly in case the system starts after the power failure or system maintenance. The designed circuit has especially PLL based self oscillation loop which operates on abnormal environment which is added to main oscillation loop. The measured results show that the circuit operates well with 153.52 MHz clock frequency not only on normal environment but also on abnormal environment. Rms jitter of the PLL loop is about 23 ps.

  • PDF

A Radio-Frequency PLL Using a High-Speed VCO with an Improved Negative Skewed Delay Scheme (향상된 부 스큐 고속 VCO를 이용한 초고주파 PLL)

  • Kim, Sung-Ha;Kim, Sam-Dong;Hwang, In-Seok
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.6
    • /
    • pp.23-36
    • /
    • 2005
  • PLLs have been widely used for many applications including communication systems. This paper presents a VCO with an improved negative skewed delay scheme and a PLL using this VCO. The proposed VCO and PLL are intended for replacing traditional LC oscillators and PLLs used in communication systems and other applications. The circuit designs of the VCO and PLL are based on 0.18um CMOS technology with 1.8V supply voltage. The proposed VCO employs subfeedback loops using pass-transistors and needs two opposite control voltages for the pass transistors. The subfeedback loops speed up oscillation depending on the control voltages and thus provide a high oscillation frequency. The two voltage controls have opposite frequency gain characteristics and result in low phase-noise. The 7-stage VCO in 0.18um CMOS technology operates from $3.2GHz\~6.3GHz$ with phase noise of about -128.8 dBc/Hz at 1MHz frequency onset. For 1.8V supply voltage, the current consumption is about 3.8mA. The proposed PLL has dual loop-filters for the proposed VCO. The PLL is operated at 5GHz with 1.8V supply voltage. These results indicate that the proposed VCO can be used for radio frequency operations replacing LC oscillators. The circuits have been designed and simulated using 0.18um TSMC library.

PLL Control Method for Precise Speed Control of Slotless PM Brushless DC Motor Using 2 Hall-ICs (2 Hall-ICs를 이용한 Slotless PM Brushless DC Motor의 정밀속도제어를 위한 PLL 제어방식)

  • Woo M. S.;Yoon Y. H.;LEE T. W.;Won C. Y.;Choe Y. Y.
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.665-669
    • /
    • 2004
  • Generally, Slotless PM BLDC drive system is necessary that the three Hall-ICs evenly be distributed around the stator circumference and encoder be installed in case of the 3 phase motor. So, the Hall-ICs are set up in this motor to detect the main flux from the rotor, and the output signal from Hall-ICs is used to drive a power transistor to control the winding current. However, instead of using three Hall-ICs and encoder, we used only two Hall-ICs for the permanent magnet rotor position and for the speed feedback signals, and also for a microcontroller of 16-bit type (80C196KC) with the 3 phase Slotless PM BLDC whose six stator and two rotor designed. Two Hall-IC Hc and $H_B$ are placed on the endplate at 120 degree intervals, and with these elements, we can estimate information of the others phase in sequence through a rotating rotor.

  • PDF

A Lock-Time Improvement for an X-Band Frequency Synthesizer Using an Active Fast-Lock Loop Filter

  • Heo, Yun-Seong;Oh, Hyun-Seok;Jeong, Hae-Chang;Yeom, Kyung-Whan
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.2
    • /
    • pp.105-112
    • /
    • 2011
  • In phase-locked frequency synthesizers, a fast-lock technique is frequently employed to overcome the trade-off between a lock-time and a spurious response. The function of fast-lock in a conventional PLL (Phased Lock Loop) IC (Integrated Circuit) is limited by a factor of 16, which is usually implemented by a scaling of charge pumper, and consequently a lock time improvement of a factor of 4 is possible using the conventional PLL IC. In this paper, we propose a novel external active fast-lock loop filter. The proposed loop filter provides, conceptually, an unlimited scaling of charge pumper current, and can overcome conventional trade-off between lock-time and spur suppression. To demonstrate the validity of our proposed loop-filter, we fabricated an X-band frequency synthesizer using the proposed loop filter. The loop filter in the synthesizer is designed to have a loop bandwidth of 100 kHz in the fast-lock mode and a loop bandwidth of 5 kHz in the normal mode, which corresponds to a charge pumper current change ratio of 400. The X-band synthesizer shows successful performance of a lock-time of below 10 ${\mu}sec$ and reference spur suppression below -64 dBc.

Implementation of High Stable Phase-Locked Oscillator for X-Band Satellite Communication (X-Band 위성통신을 위한 고안정 위상 동기 발진기 구현)

  • Lim, Jin-Won;Joung, In-Ki;Rhee, Young-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.9
    • /
    • pp.967-973
    • /
    • 2009
  • In this paper, X-band satellite communication oscillator of double phase locked is implemented by constructing a couple of phased-locked loop, and then we have analyzed the phase noise of designed PLL-DRO. The designed phase-locked oscillator is consist of series feedback DRO, frequency divider, phase detector, loop filter and programmable PLL-IC. By dividing oscillation frequency of 12.6 GHz into two frequencies, it exhibits output power of 15.32 dBm at 6.3 GHz. Phase noises of implemented oscillator are -81 dBc/Hz@100Hz, -100.86 dBc/Hz@1 kHz, -111.12 dBc/Hz@10 kHz, -116 dBc/Hz@100 kHz and -140.49 dBc/Hz@1 MHz respectively. These indicate excellent stable operation of oscillator and very good phase noise characteristics.

Design of a CMOS IF PLL Frequency Synthesizer (CMOS IF PLL 주파수합성기 설계)

  • 김유환;권덕기;문요섭;박종태;유종근
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.8
    • /
    • pp.598-609
    • /
    • 2003
  • This paper describes a CMOS IF PLL frequency synthesizer. The designed frequency synthesizer can be programmed to operate at various intermediate frequencies using different external LC-tanks. The VCO with automatic amplitude control provides constant output power independent of the Q-factor of the external LC-tank. The designed frequency divider includes an 8/9 or 16/17 dual-modulus prescaler and can be programmed to operate at different frequencies by external serial data for various applications. The designed circuit is fabricated using a 0.35${\mu}{\textrm}{m}$ n-well CMOS process. Measurement results show that the phase noise is 114dBc/Hz@100kHz and the lock time is less than 300$mutextrm{s}$. It consumes 16mW from 3V supply. The die area is 730${\mu}{\textrm}{m}$$\times$950${\mu}{\textrm}{m}$.

Microprocessor-based Firing Angle Control of 3 Phase Full Wave Controlled Rectifier (마이크로프로세서에 의한 3상 전파 제어 정류기의 점호각 제어)

  • 우광준;장석구;장석원
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.4 no.2
    • /
    • pp.55-62
    • /
    • 1990
  • I본 연구에서는 마이크로프로세서에 의한 3상 전파 제어정류기의 점호각 제어회로를 설계하였다. 제어회로는 8비트 마이크로프로세서, 점호신호 발생 ROM, Presettable카운터, N분주 카운터와 PLL IC 등으로 구성되어 있다. PLL 원리를 이용하여 주파수 체배회로를 구성하였기 때문에 점호각이 넓은 범위의 전원 주파수에서 제어될 수 있고 간단한 제어알고리즘으로 인해 처리시간이 줄어들므로 빠른 응답특성을 가질 수 있었다. 본 연구에서는 기본 동작원리와 회로의 동작 특성에 대하여 설명하였고 좋은 동작 특성을 실험을 통해서 확인하였다. 이러한 동작원리는 싸이클로컨버터, 3상 교류 전압 조정기, dc 서보제어기와 다른 제어 시스템 등에도 적용이 가능할 것으로 생각된다.

  • PDF

A CMOS Temperature Control Circuit for Crystal-on-Chip Oscillator

  • Park, Cheol-Young
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.103-106
    • /
    • 2005
  • This paper reports design and fabrication of CMOS temperature sensor circuit using MOSIS 0.25um CMOS technology. The proposed circuit has a temperature coefficient of $13mV/^{\circ}C$ for a wide operating temperature range with a good linearity. This circuit may be applicable to the design of one-chip IC where quartz crystal resonator is directly mounted on CMOS oscillator chips.

  • PDF

The development of IF amplifier having low noise and wide AGC range (저잡음 및 넓은 자동 이득 제어 영역을 갖는 IF 증폭기의 설계)

  • 이흥배;엄두찬;김용석;정연철
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.10
    • /
    • pp.73-81
    • /
    • 1994
  • It is AGC(Automatic Gain Control) amplifier to decide characteristics of IF(Intermediate Frequency) processing IC. When demodulated IF signal by PLL type demodulator, the amplitude of input singla should be maintained at a certain amplitude. The AGC amplifier is an important factor to achieve this condition. The AGC amplifier needs the wide dynamic range, the wide AGC range and better noise characteristics. We designed the AGC amplifier to satisfy these characteristics.

  • PDF