• Title/Summary/Keyword: PID controller PID

Search Result 1,747, Processing Time 0.035 seconds

PSO-Based PID Controller for AVR Systems Concerned with Design Specification (설계사양을 고려한 AVR 시스템의 PSO 기반 PID 제어기)

  • Lee, Yun-Hyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.330-338
    • /
    • 2018
  • The proportional-integral-derivative(PID) controller has been widely used in the industry because of its robust performance and simple structure in a wide range of operating conditions. However, the AVR(Automatic Voltage Regulator) as a control system is not robust to variations of the power system parameters. Therefore, it is necessary to use PID controller to increase the stability and performance of the AVR system. In this paper, a novel design method for determining the optimal PID controller parameters of an AVR system using the particle swarm optimization(PSO) algorithm is presented. The proposed approach has superior features, including easy implementation, stable convergence characteristic and good computational efficiency. In order to assist estimating the performance of the proposed PSO-PID controller, a new performance criterion function is also defined. This evaluation function is intended to reflect when the maximum percentage overshoot, the settling time are given as design specifications. The ITAE evaluation function should impose a penalty if the design specifications are violated, so that the PSO algorithm satisfies the specifications when searching for the PID controller parameter. Finally, through the computer simulations, the proposed PSO-PID controller not only satisfies the given design specifications for the terminal voltage step response, but also shows better control performance than other similar recent studies.

Design of the PID Controller Using Finite Alphabet Optimization (유한 알파벳 PID제어기 설계)

  • Yang, Yun-Hyuck;Kwon, Oh-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.647-649
    • /
    • 2004
  • When a controller is implemented by a one-chip processor with fixed-point operations, the finite alphabet problem usually occurs since parameters and signals should be taken in a finite set of values. This paper formulates PID finite alphabet PID control problem which combines the PID controller with the finite alphabet problem. We will propose a PID parameter tuning method based on an optimization algorithm under the finite alphabet condition. The PID parameters can be represented by a fixed-point representation, and then the problem is formulated as an optimization with constraints that parameters are taken in the finite set. Some simulation are to be performed to exemplify the performance of the PID parameter tuning method proposed in this paper.

  • PDF

Adaptive PID Controller for Nonlinear Systems using Fuzzy Model (퍼지 모델을 이용한 비선형 시스템의 적응 PID 제어기)

  • Kim, Jong-Hua;Lee, Won-Chang;Kang, Geun-Taek
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.1
    • /
    • pp.85-90
    • /
    • 2003
  • This paper presents an adaptive PID control scheme for nonlinear system. TSK(Takagi-Sugeno-Kang) fuzzy model is used to estimate the error of control input, and the parameters of PID controller are adapted using the error. The parameters of TSK fuzzy model also adapted to plant. The proposed algorithm allows designing adaptive PID controller which Is adapted to the uncertainty of nonlinear plant and the change of parameters. The usefulness of the proposed algorithm is also certificated by the several simulations.

Attitude Control of Helicopter Simulator System Using GA-PID Controller (GA-PID 제어기를 이용한 헬리콥터 시스템의 자세 제어)

  • 성상규;이준탁;박두환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.675-684
    • /
    • 2004
  • The Helicopter system has a non-linearity and complexity. Futhermore, because of absence of its correct mathematical model. it is difficult to control accurately its attitudes for elevation angle and azimuth one. Therefore, we proposed a GA-PID control technique to control these angles efficiently. The proposed GA-PID controller can systematically generate optimal PID parameters by applying GA theory to a helicopter attitude control system. Through the computer simulation, the GA-PID technique shows better attitude control characteristic than traditional PID control technique.

A Design PID Controller by Neural Network algorithm with Momentum term in Position control system (위치제어계에서 모먼텀 항을 갖는 신경망 알고리듬 의한 PID 제어기 설계)

  • 박광현;허진영;하홍곤
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.10a
    • /
    • pp.380-385
    • /
    • 2001
  • In this paper, in order to get rid of danger trapped Local minimum point, disadvantage of General Back-propagation and simultaneously obtain fast teaming-speed. We propose PID Back-Propagation with Momentum Term(PID-BPMT) and Design PID Controller by Neural Network with Momentum term. Consider to apply for that Controller in position control system by driven D.C servo motor. its useful performance is verified by computer simulation

  • PDF

A Position Control of EHA Systems using Adaptive PID Sliding Mode Control Scheme (적응PID 슬라이딩 모드 제어기법을 적용한 EHA 시스템의 위치제어)

  • Lee, Ji-Min;Park, Sung-Hwan;Park, Min-Gyu;Kim, Jong-Shik
    • Journal of Power System Engineering
    • /
    • v.17 no.4
    • /
    • pp.120-130
    • /
    • 2013
  • An adaptive PID sliding mode controller is proposed for the position control of electro-hydrostatic actuator(EHA) systems with system uncertainties and saturation in the motor. An EHA prototype is developed and system modeling and parameter identification are executed. Then, adaptive PID sliding mode controller and optimal anti-windup PID controller are designed and the performance and robustness of the two control systems are compared by experiment. It was found that the adaptive PID sliding mode control system has better performance and is more robust to system uncertainties than the optimal anti-windup PID control system.

Precision Position Control of a Piezoelectric Actuator Using Neural Network (신경 회로망을 이용한 압전구동기의 정밀위치제어)

  • Kim, Hae-Seok;Lee, Byung-Ryong;Park, Kyu-Youl
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.11
    • /
    • pp.9-15
    • /
    • 1999
  • A piezoelectric actuator is widely used in precision positioning applications due to its excellent positioning resolution. However, the piezoelectric actuator lacks in repeatability because of its inherently high hysteresis characteristic between voltage and displacement. In this paper, a controller is proposed to compensate the hysteresis nonlinearity. The controller is composed of a PID and a neural network part in parallel manner. The output of the PID controller is used to teach the neural network controller by the unsupervised learning method. In addition, the PID controller stabilizes the piezoelectric actuator in the beginning of the learning process, when the neural network controller is not learned. However, after the learning process the piezoelectric actuator is mainly controlled by the neural netwok controller. In this paper, the excellent tracking performance of the proposed controller was verified by experiments and was compared with the classical PID controller.

  • PDF

A Study on PID Gain Auto Tuning for Steering Type mobile robot (조향형 이동로봇을 위한 PID 이득 자동 튜닝에 관한 연구)

  • Jung, Se-Young;Yang, Tae-Kyu
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.4
    • /
    • pp.39-43
    • /
    • 2016
  • In this paper, we propose PID gain auto tuning method in steering type mobile robot. PID controller gain select method are various methods. Ziegler-Nichols step tuning method is one method tuning in PID controller. Use step tuning method find a the first gain and did experiment in steering mobile robot. and Make a new the second gains from the first gains. After appling the second gain in PID controller, Where perform observe for convergence time and stabilization error. Experiments result the second gain are useful in real steering mobile robot system.

Fuzzy PID Control by Grouping of Membership Functions of Fuzzy Antecedent Variables with Neutrosophic Set Approach and 3-D Position Tracking Control of a Robot Manipulator

  • Can, Mehmet Serhat;Ozguven, Omerul Faruk
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.969-980
    • /
    • 2018
  • This paper aims to design of the neutrosophic fuzzy-PID controller and it has been compared with the conventional fuzzy-PID controller for position tracking control in terms of robustness. In the neutrosophic fuzzy-PID controller, error (e) and change of error (ce) were assessed separately on two fuzzy inference systems (FISs). In this study, the designed method is different from the conventional fuzzy logic controller design, membership degrees of antecedent variables were determined by using the T(true), I(indeterminacy), and F(false) membership functions. These membership functions are grouped on the universe of discourse with the neutrosophic set approach. These methods were tested on three-dimensional (3-D) position-tracking control application of a spherical robot manipulator in the MATLAB Simulink. In all tests, reference trajectory was defined for movements of all axes of the robot manipulator. According to the results of the study, when the moment of inertia of the rotor is changed, less overshoot ratio and less oscillation are obtained in the neutrosophic fuzzy-PID controller. Thus, our suggested method is seen to be more robust than the fuzzy-PID controllers.

Simple Tuning Methods of PID Controller for Integrating Processes with Time Delay (시간지연을 갖는 적분 시스템의 간단한 PID 제어기 동조법)

  • Lee, Yun-Hyung;Jin, Gang-Gyoo;So, Myung-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.2
    • /
    • pp.336-342
    • /
    • 2008
  • Simple tuning methods of PI, PD and PID controller are proposed for an integrating process with time delay. This is based on matching the coefficients of corresponding powers of s in the numerator and that in the denominator of the closed-loop transfer function. For set-point tracking problem, the derived controller is found to be a PD controller which is shown by Lee's tuning rule based on minimizing the performance indexes (ISE, IAE, ITAE) using a real-coded genetic algorithm. A method can be also proposed PI, PID controllers according to tuning parameter lambda $({\lambda})$ similar to IMC method. Simulation example is given to illustrate the set-point tracking and disturbance rejection performance of the proposed method.