• 제목/요약/키워드: PI3K/Akt pathway

검색결과 264건 처리시간 0.026초

Antiapoptotic Effects Induced by Different Wavelengths of Ultraviolet Light

  • Ibuki, Yuko;Goto, Rensuke
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.485-487
    • /
    • 2002
  • Cells receive signals for survival as well as death, and the balance between the two ultimately determines the fate of the cells. UV-triggered apoptotic signaling has been well documented, whereas UV-induced survival effects have received little attention. We have reported previously that UVB irradiation prevented apoptosis, which was partly dependent on activation of the phosphatidylinositol 3-kinase (PI3-kinase)/ Akt pathway. In this study, anti-apoptotic effects of UV with different wavelength ranges, UVA, UVB and UVC, were examined. NIH3T3 cells showed apoptotic cell death by detachment from the extracellular matrix under serum-free conditions, which was prevented by all wavelengths. However, the effect of UVA was less than those of UVB and UVC. Reduction of mitochondrial transmembrane potential and activation of caspase-9 and -3 were suppressed by all three wavelengths of UV, showing wavelength-dependent effects as mentioned above. The PI3-kinase inhibitor wortmannin partially inhibittrl the UVB and UVC-induced suppression of apoptosis, but not the inhibitoty effect of UVA. The Akt phosphotylation by UVB and UVC was completely inhibittrl by addition of wortmannin, but that by UVA was not P38 MAP kinase inhibitor SB203580 partially inhibited the UVB and UVC-induced suppression of apoptosis and Akt phosphotylation, and completely inhibited UVA-induced those. These results suggested the existence of two different survival pathways leading to suppression of apoptosis, one for UVA that is independent of the PI3-kinase/Akt pathway and dependent on p38 MAP kinase, and the other for UVB and UVC that is dependent on both pathways.

  • PDF

Induction of apoptotic cell death in human bladder cancer cells by ethanol extract of Zanthoxylum schinifolium leaf, through ROS-dependent inactivation of the PI3K/Akt signaling pathway

  • Park, Cheol;Choi, Eun Ok;Hwangbo, Hyun;Lee, Hyesook;Jeong, Jin-Woo;Han, Min Ho;Moon, Sung-Kwon;Yun, Seok Joong;Kim, Wun-Jae;Kim, Gi-Young;Hwang, Hye-Jin;Choi, Yung Hyun
    • Nutrition Research and Practice
    • /
    • 제16권3호
    • /
    • pp.330-343
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Zanthoxylum schinifolium is traditionally used as a spice for cooking in East Asian countries. This study was undertaken to evaluate the anti-proliferative potential of ethanol extracts of Z. schinifolium leaves (EEZS) against human bladder cancer T24 cells. MATERIALS/METHODS: Subsequent to measuring the cytotoxicity of EEZS, the anti-cancer activity was measured by assessing apoptosis induction, reactive oxygen species (ROS) generation, and mitochondrial membrane potential (MMP). In addition, we determined the underlying mechanism of EEZS-induced apoptosis through various assays, including Western blot analysis. RESULTS: EEZS treatment concentration-dependently inhibited T24 cell survival, which is associated with apoptosis induction. Exposure to EEZS induced the expression of Fas and Fas-ligand, activated caspases, and subsequently resulted to cleavage of poly (ADP-ribose) polymerase. EEZS also enhanced the expression of cytochrome c in the cytoplasm by suppressing MMP, following increase in the ratio of Bax:Bcl-2 expression and truncation of Bid. However, EEZS-mediated growth inhibition and apoptosis were significantly diminished by a pan-caspase inhibitor. Moreover, EEZS inhibited activation of the phosphoinositide 3-kinase (PI3K)/Akt pathway, and the apoptosis-inducing potential of EEZS was promoted in the presence of PI3K/Akt inhibitor. In addition, EEZS enhanced the production of ROS, whereas N-acetyl cysteine (NAC), a ROS scavenger, markedly suppressed growth inhibition and inactivation of the PI3K/Akt signaling pathway induced by EEZS. Furthermore, NAC significantly attenuated the EEZS-induced apoptosis and reduction of cell viability. CONCLUSIONS: Taken together, our results indicate that exposure to EEZS exhibits anti-cancer activity in T24 bladder cancer cells through ROS-dependent induction of apoptosis and inactivation of the PI3K/Akt signaling pathway.

Antitumor Activity of Combination Therapy with Metformin and Trametinib in Non-Small Cell Lung Cancer Cells

  • Ko, Eunjeong;Baek, Seungjae;Kim, Jiwon;Park, Deokbae;Lee, Youngki
    • 한국발생생물학회지:발생과생식
    • /
    • 제24권2호
    • /
    • pp.113-123
    • /
    • 2020
  • Metformin has been widely used as an antidiabetic drug, and reported to inhibit cell proliferation in many cancers including non-small cell lung cancer (NSCLC). In NSCLC cells, metformin suppresses PI3K/AKT/mTOR signaling pathway, but effect of metformin on RAS/RAF/MEK/ERK signaling pathway is controversial; several studies showed the inhibition of ERK activity, while others demonstrated the activation of ERK in response to metformin exposure. Metformin-induced activation of ERK is therapeutically important, since metformin could enhance cell proliferation through RAS/RAF/MEK/ERK pathway and lead to impairment of its anticancer activity suppressing PI3K/AKT/mTOR pathway, requiring blockade of both signaling pathways for more efficient antitumor effect. The present study tested the combination therapy of metformin and trametinib by monitoring the alterations of regulatory effector proteins of cell signaling pathways and the effect of the combination on cell viability in NCI-H2087 NSCLC cells with NRAS and BRAF mutations. We show that metformin alone blocks PI3K/AKT/mTOR signaling pathway but induces the activation and phosphorylation of ERK. The combination therapy synergistically decreased cell viability in treatment with low doses of two drugs, while it gave antagonistic effect with high doses. These findings suggest that the efficacy of metformin and trametinib combination therapy may depend on the alteration of ERK activity induced by metformin and specific cellular context of cancer cells.

Laminar Flow Inhibits ER Stress-Induced Endothelial Apoptosis through PI3K/Akt-Dependent Signaling Pathway

  • Kim, Suji;Woo, Chang-Hoon
    • Molecules and Cells
    • /
    • 제41권11호
    • /
    • pp.964-970
    • /
    • 2018
  • Atherosclerosis preferentially involves in prone area of low and disturbed blood flow while steady and high levels of laminar blood flow are relatively protected from atherosclerosis. Disturbed flow induces endoplasmic reticulum (ER) stress and the unfolded protein response (UPR). ER stress is caused under stress that disturbs the processing and folding of proteins resulting in the accumulation of misfolded proteins in the ER and activation of the UPR. Prolonged or severe UPR leads to activate apoptotic signaling. Recent studies have indicated that disturbed flow significantly up-regulated $p-ATF6{\alpha}$, $p-IRE1{\alpha}$, and its target spliced XBP-1. However, the role of laminar flow in ER stress-mediated endothelial apoptosis has not been reported yet. The present study thus investigated the role of laminar flow in ER stress-dependent endothelial cell death. The results demonstrated that laminar flow protects ER stress-induced cleavage forms of PARP-1 and caspase-3. Also, laminar flow inhibits ER stress-induced $p-eIF2{\alpha}$, ATF4, CHOP, spliced XBP-1, ATF6 and JNK pathway; these effects are abrogated by pharmacological inhibition of PI3K with wortmannin. Finally, nitric oxide affects thapsigargin-induced cell death in response to laminar flow but not UPR. Taken together, these findings indicate that laminar flow inhibits UPR and ER stress-induced endothelial cell death via PI3K/Akt pathway.

1,3,4-Thiadiazole 유도체의 합성 및 Akt1 카이네이즈 저해 활성 (Synthesis and Akt1 Kinase Inhibitory Activity of 1,3,4-Thiadiazole Derivatives)

  • 유경호;김세영;류재천
    • 한국응용과학기술학회지
    • /
    • 제25권3호
    • /
    • pp.370-379
    • /
    • 2008
  • Akt, a serine/threonine protein kinase as a viral oncogene, is a critical regulator of PI3K-mediated cell proliferation and survival. On translocation, Akt is phosphorylated and activated, ultimately resulting in stimulation of cell growth and survival. As a part of our program toward the novel Akt1 inhibitors with potent activity over PI3K signaling pathway, we found primary hit compound 2 with an $IC_{50}$ value of $620\mu}M$ from protein kinase focused library. Based on the structural features of 2, new 1,3,4-thiadiazole derivatives were designed by the introduction of aromatic and heteroaromatic moieties onto thiadiazole nucleus. In this work, a series of 1,3,4-thiadiazole derivatives 1a-1 were synthesized and evaluated for Akt1 inhibitory activity.

사람 모유두세포에서 PI3K/Akt와 Wnt/β-catenine 신호전달을 경유한 저령추출물의 세포증식 효과 (Proliferative Activity of Polyporus umbellatus Extract from Mushrooms via the PI3K/Akt and Wnt/β-catenine signaling in HHDPCs)

  • 강리아민주;강석종;문연자
    • 대한본초학회지
    • /
    • 제39권1호
    • /
    • pp.23-29
    • /
    • 2024
  • Objectives : Polyporus umbellatus is a medicinal mushroom that has been used for over thousands years in Chinese medicine as a powerful diuretic to relieve fluid retention and edema. Dermal papilla is located at the bottom of the hair follicle and connected to the blood vessels where it gets the nutrients and oxygen to nurture hair follicle. This study examined the mechanism through which the ethanol extract of Polyporus umbellatus (EPU) promoted the proliferation of human dermal papilla cells (HHDPCs). Methods : To estimate the proliferative effects of EPU on HHDPCs, cell viability was estimated by thiazolyl blue tetrazolium bromide (MTT) assay. Western blotting was used to investgate the activation of ERK, phosphoinositide 3-kinase (PI3K)/Akt, β-catenin, GSK-3β and heme oxygenase-1 (HO-1). Cells were treated with inhibitors of ERK and Akt prior to EPU treatment. Results : EPU promoted the proliferation of HHDPCs and the phosphorylation of ERK and Akt in dose dependent manner. However, the proliferative effect of EPU on HHDPCs was inhibited by pre-treatment of ERK inhibitor (PD98059) and Akt inhibitor (LY294002). Furthermore, EPU respectively stimulated the protein expression of β-catenin and phosphorylated GSK-3β. EPU significantly increased the protein expression levels of proliferation and cytoprotection related genes such as Bcl-2, SIRT-1, and HO-1 in cells. Conclusion : This results suggest that EPU promoted the proliferation of HHDPCs via activating PI3K/Akt and Wnt/β-catenin signaling pathway in HHDPCs.

Resveratrol이 MDA-MB-231 유방암 세포에서 PI3K/Akt와 p53 신호경로를 통한 apoptosis 유도 (Resveratrol Induces Apoptosis through PI3K/Akt and p53 Signal Pathway in MDA-MB-231 Breast Cancer Cells)

  • 권중기;박영석;박병권;김병수;김상기;정지윤
    • 한국식품과학회지
    • /
    • 제44권4호
    • /
    • pp.452-459
    • /
    • 2012
  • 본 연구는 MDA-MB-231 세포에서 resveratrol의 apoptosis 유발 효과에 대해 알아보기 위해 연구되었다. Cell viability 결과 농도 유의적으로 감소하였으며, DAPI stain에서는 농도 의존적으로 chromatin condensation이 증가하는 것을 확인하였다. Resveratrol은 p53, cleaved-caspase-3, cleaved-caspase-9의 발현을 증가시켰지만, PI3K/Akt의 발현은 시간 의존적으로 감소시켰다. In vivo 실험에서는 resveratrol의 종양 억제 효과를 확인하였다. 50 mg/kg 투여한 군에서 종양의 크기가 대조군에 비해 감소하였으며, TUNEL assay를 통해 apoptosis cell을 관찰한 결과 50 mg/kg 투여한 군에서 많이 관찰되었다. 면역조직화학 염색을 통해 50 mg/kg 투여한 군에서 p53, cytochrome-C, cleaved-caspase-3의 발현이 증가하는 것을 확인하였다. 본 연구의 결과를 종합하여 봤을 때 resveratrol이 MDA-MB-231 세포에 apoptosis를 유발하는데 효과가 있는 것으로 사료된다.

Induction of Mac-2BP by nerve growth factor is regulated by the PI3K/Akt/NF-κB-dependent pathway in the HEK293 cell line

  • Park, Yuk-Pheel;Choi, Seung-Chul;Kim, Bo-Yeon;Kim, Jong-Tae;Song, Eun-Young;Kang, Seong-Ho;Yoon, Do-Young;Paik, Sang-Gi;Kim, Kwang-Dong;Kim, Jong-Wan;Lee, Hee-Gu
    • BMB Reports
    • /
    • 제41권11호
    • /
    • pp.784-789
    • /
    • 2008
  • Mac-2BP is a ligand of the galectin family that has been suggested to affect tumor proliferation and metastasis formation. We assessed Mac-2BP expression at the transcriptional and translational levels to evaluate nerve growth factor (NGF)-induced Mac-2BP expression. A time kinetic analysis using reverse transcription-polymerase chain reaction showed that NGF-induced Mac-2BP transcript levels were 4-5 times higher than in controls. Mac-2BP enzyme-linked immunosorbent assay and immuno-fluorescence staining showed a 2-3-fold increase in intracellular and secreted Mac-2BP as a result of NGF stimulation. This increase was regulated by Akt activation and NF-${\kappa}B$ binding. p65 and p50-NF-${\kappa}B$ are major transcriptional factors in the Mac-2BP promoter region, and were shown to be regulated in accordance with the Akt activation states. Collectively, these results suggest that NGF induces Mac-2BP expression via the PI3K/Akt/NF-${\kappa}B$ pathway.

β-lapachone-Induced Apoptosis of Human Gastric Carcinoma AGS Cells Is Caspase-Dependent and Regulated by the PI3K/Akt Pathway

  • Yu, Hai Yang;Kim, Sung Ok;Jin, Cheng-Yun;Kim, Gi-Young;Kim, Wun-Jae;Yoo, Young Hyun;Choi, Yung Hyun
    • Biomolecules & Therapeutics
    • /
    • 제22권3호
    • /
    • pp.184-192
    • /
    • 2014
  • ${\beta}$-lapachone is a naturally occurring quinone that selectively induces apoptotic cell death in a variety of human cancer cells in vitro and in vivo; however, its mechanism of action needs to be further elaborated. In this study, we investigated the effects of ${\beta}$-lapachone on the induction of apoptosis in human gastric carcinoma AGS cells. ${\beta}$-lapachone significantly inhibited cellular proliferation, and some typical apoptotic characteristics such as chromatin condensation and an increase in the population of sub-G1 hypodiploid cells were observed in ${\beta}$-lapachone-treated AGS cells. Treatment with ${\beta}$-lapachone caused mitochondrial transmembrane potential dissipation, stimulated the mitochondria-mediated intrinsic apoptotic pathway, as indicated by caspase-9 activation, cytochrome c release, Bcl-2 downregulation and Bax upregulation, as well as death receptor-mediated extrinsic apoptotic pathway, as indicated by activation of caspase-8 and truncation of Bid. This process was accompanied by activation of caspase-3 and concomitant with cleavage of poly(ADP-ribose) polymerase. The general caspase inhibitor, z-VAD-fmk, significantly abolished ${\beta}$-lapachone-induced cell death and inhibited growth. Further analysis demonstrated that the induction of apoptosis by ${\beta}$-lapachone was accompanied by inactivation of the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. The PI3K inhibitor LY29004 significantly increased ${\beta}$-lapachone-induced apoptosis and growth inhibition. Taken together, these findings indicate that the apoptotic activity of ${\beta}$-lapachone is probably regulated by a caspase-dependent cascade through activation of both intrinsic and extrinsic signaling pathways, and that inhibition of the PI3K/Akt signaling may contribute to ${\beta}$-lapachone-mediated AGS cell growth inhibition and apoptosis induction.

Inflammatory cytokines in midbrain periaqueductal gray contribute to diabetic induced pain hypersensitivity through phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin signaling pathway

  • Guo, Mochi;Jiang, Zongming;Chen, Yonghao;Wang, Fei;Wang, Zhifeng
    • The Korean Journal of Pain
    • /
    • 제34권2호
    • /
    • pp.176-184
    • /
    • 2021
  • Background: Diabetes-related neuropathic pain frequently occurs, and the underpinning mechanism remains elusive. The periaqueductal gray (PAG) exhibits descending inhibitory effects on central pain transmission. The current work aimed to examine whether inflammatory cytokines regulate mechanical allodynia and thermal hyperalgesia induced by diabetes through the phosphoinositide 3-kinase (PI3K)-mammalian target of rapamycin (mTOR) pathway in the PAG. Methods: Streptozotocin (STZ) was administered intraperitoneally to mimic allodynia and hyperalgesia evoked by diabetes in rats. Behavioral assays were carried out for determining mechanical pain and thermal hypersensitivity. Immunoblot and ELISA were performed to examine PAG protein amounts of interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α), as well as their corresponding receptors in STZ rats, and the expression of PI3K/protein kinase B (Akt)/mTOR signaling effectors. Results: Increased PAG p-PI3K/p-Akt/p-mTOR protein amounts were observed in STZ-induced animals, a PI3K-mTOR pathway inhibition in the PAG attenuated neuropathic pain responses. Moreover, the PAG concentrations of IL-1β, IL-6, and TNF-α and their receptors (namely, IL-1R, IL-6R, and tumor necrosis factor receptor [TNFR] subtype TNFR1, respectively) were increased in the STZ rats. Additionally, inhibiting IL-1R, IL-6R, and TNFR1 ameliorated mechanical allodynia and thermal hyperalgesia in STZ rats, alongside the downregulation of PI3K-mTOR signaling. Conclusions: Overall, the current study suggests that upregulated proinflammatory cytokines and their receptors in the PAG activate PI3K-mTOR signaling, thereby producing a de-inhibition effect on descending pathways in modulating pain transmission, and eventually contributing to neuropathic pain.