DOI QR코드

DOI QR Code

β-lapachone-Induced Apoptosis of Human Gastric Carcinoma AGS Cells Is Caspase-Dependent and Regulated by the PI3K/Akt Pathway

  • Yu, Hai Yang (College of Natural Resources and Life Science, Dong-A University) ;
  • Kim, Sung Ok (Team for Scientification of Korean Medical Intervention (BK21 Plus) & Department of Herbal Pharmacology, College of Oriental Medicine, Daegu Haany University) ;
  • Jin, Cheng-Yun (School of Pharmaceutical Science, Zhengzhou University) ;
  • Kim, Gi-Young (Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University) ;
  • Kim, Wun-Jae (Department of Urology, Chungbuk National University College of Medicine) ;
  • Yoo, Young Hyun (Department of Anatomy and Cell Biology, Dong-A University College of Medicine and Mitochondria Hub Regulation Center) ;
  • Choi, Yung Hyun (Department of Biochemistry, Dongeui University College of Oriental Medicine)
  • Received : 2014.03.03
  • Accepted : 2014.05.07
  • Published : 2014.05.31

Abstract

${\beta}$-lapachone is a naturally occurring quinone that selectively induces apoptotic cell death in a variety of human cancer cells in vitro and in vivo; however, its mechanism of action needs to be further elaborated. In this study, we investigated the effects of ${\beta}$-lapachone on the induction of apoptosis in human gastric carcinoma AGS cells. ${\beta}$-lapachone significantly inhibited cellular proliferation, and some typical apoptotic characteristics such as chromatin condensation and an increase in the population of sub-G1 hypodiploid cells were observed in ${\beta}$-lapachone-treated AGS cells. Treatment with ${\beta}$-lapachone caused mitochondrial transmembrane potential dissipation, stimulated the mitochondria-mediated intrinsic apoptotic pathway, as indicated by caspase-9 activation, cytochrome c release, Bcl-2 downregulation and Bax upregulation, as well as death receptor-mediated extrinsic apoptotic pathway, as indicated by activation of caspase-8 and truncation of Bid. This process was accompanied by activation of caspase-3 and concomitant with cleavage of poly(ADP-ribose) polymerase. The general caspase inhibitor, z-VAD-fmk, significantly abolished ${\beta}$-lapachone-induced cell death and inhibited growth. Further analysis demonstrated that the induction of apoptosis by ${\beta}$-lapachone was accompanied by inactivation of the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. The PI3K inhibitor LY29004 significantly increased ${\beta}$-lapachone-induced apoptosis and growth inhibition. Taken together, these findings indicate that the apoptotic activity of ${\beta}$-lapachone is probably regulated by a caspase-dependent cascade through activation of both intrinsic and extrinsic signaling pathways, and that inhibition of the PI3K/Akt signaling may contribute to ${\beta}$-lapachone-mediated AGS cell growth inhibition and apoptosis induction.

Keywords

References

  1. Ang, K. L., Shi, D. L., Keong, W. W. and Epstein, R. J. (2005) Upregulated Akt signaling adjacent to gastric cancers: implications for screening and chemoprevention. Cancer Lett. 225, 53-59. https://doi.org/10.1016/j.canlet.2004.11.021
  2. Bey, E. A., Bentle, M. S., Reinicke, K. E., Dong, Y., Yang, C. R., Girard, L., Minna, J. D., Bornmann, W. G., Gao, J. and Boothman, D. A. (2007) An NQO1- and PARP-1-mediated cell death pathway induced in non-small-cell lung cancer cells by b-lapachone. Proc. Natl. Acad. Sci. U.S.A. 104, 11832-11837. https://doi.org/10.1073/pnas.0702176104
  3. Binutu, O. A., Adesogan, K. E. and Okogun, J. I. (1996) Antibacterial and antifungal compounds from Kigelia pinnata. Planta Med. 62, 352-353. https://doi.org/10.1055/s-2006-957900
  4. Boothman, D. A., Trask, D. K. and Pardee, A. B. (1989) Inhibition of potentially lethal DNA damage repair in human tumor cells by b-lapachone, an activator of topoisomerase I. Cancer Res. 49, 605-612.
  5. Carnero, A., Blanco-Aparicio, C., Renner, O., Link, W. and Leal, J. F. (2008) The PTEN/PI3K/AKT signalling pathway in cancer, therapeutic implications. Curr. Cancer Drug Targets 8, 187-198. https://doi.org/10.2174/156800908784293659
  6. Chau, Y. P., Shiah, S. G., Don, M. J. and Kuo, M. L. (1998) Involvement of hydrogen peroxide in topoisomerase inhibitor b-lapachone-induced apoptosis and differentiation in human leukemia cells. Free Radic. Biol. Med. 24, 660-670. https://doi.org/10.1016/S0891-5849(97)00337-7
  7. Choi, Y. H., Kang, H. S. and Yoo, M. A. (2003) Suppression of human prostate cancer cell growth by b-lapachone via down-regulation of pRB phosphorylation and induction of Cdk inhibitor p21(WAF1/ CIP1). J. Biochem. Mol. Biol. 36, 223-229. https://doi.org/10.5483/BMBRep.2003.36.2.223
  8. Choi, Y. H., Kim, M. J., Lee, S. Y., Lee, Y. N., Chi, G. Y., Eom, H. S., Kim, N. D. and Choi, B. T. (2002) Phosphorylation of p53, induction of Bax and activation of caspases during b-lapachone-mediated apoptosis in human prostate epithelial cells. Int. J. Oncol. 21, 1293-1299.
  9. Chowdhury, I., Tharakan, B. and Bhat, G. K. (2006) Current concepts in apoptosis: the physiological suicide program revisited. Cell. Mol. Biol. Lett. 11, 506-525. https://doi.org/10.2478/s11658-006-0041-3
  10. Fresno Vara, J. A., Casado, E., de Castro, J., Cejas, P., Belda-Iniesta, C. and Gonzalez-Baron, M. (2004) PI3K/Akt signalling pathway and cancer. Cancer Treat. Rev. 30, 193-204. https://doi.org/10.1016/j.ctrv.2003.07.007
  11. Frydman, B., Marton, L. J., Sun, J. S., Neder, K., Witiak, D. T., Liu, A. A., Wang, H. M., Mao, Y., Wu, H. V., Sanders, M. M. and Liu, L. F. (1997) Induction of DNA topoisomerase II-mediated DNA cleavage by $\beta$-lapachone and related naphthoquinones. Cancer Res. 57, 620-627
  12. Gupta, D., Podar, K., Tai, Y. T., Lin, B., Hideshima, T., Akiyama, M., LeBlanc, R., Catley, L., Mitsiades, N., Mitsiades, C., Chauhan, D., Munshi, N. C. and Anderson, K. C. (2002) b-lapachone, a novel plant product, overcomes drug resistance in human multiple myeloma cells. Exp. Hematol. 30, 711-720. https://doi.org/10.1016/S0301-472X(02)00839-1
  13. He, T., Banach-Latapy, A., Vernis, L., Dardalhon, M., Chanet, R. and Huang, M. E. (2013) Peroxiredoxin 1 knockdown potentiates $\beta$-lapachone cytotoxicity through modulation of reactive oxygen species and mitogen-activated protein kinase signals. Carcinogenesis 34, 760-769. https://doi.org/10.1093/carcin/bgs389
  14. Hixon, M. L., Paccagnella, L., Millham, R., Perez-Olle, R. and Gualberto, A. (2010) Development of inhibitors of the IGF-IR/PI3K/Akt/ mTOR pathway. Rev. Recent Clin. Trials 5, 189-208. https://doi.org/10.2174/157488710792007329
  15. Hwang, Y. J., Lee, E. J., Kim, H.R. and Hwang, K. A. (2013) Molecular mechanisms of luteolin-7-O-glucoside-induced growth inhibition on human liver cancer cells: G2/M cell cycle arrest and caspaseindependent apoptotic signaling pathways. BMB Rep. 46, 611-616. https://doi.org/10.5483/BMBRep.2013.46.12.133
  16. Jin, Z. and El-Deiry, W. S. (2005) Overview of cell death signaling pathways. Cancer Biol. Ther. 4, 139-163.
  17. Kaufmann, S. H., Desnoyers, S., Ottaviano, Y., Davidson, N. E. and Poirier, G. G. (1993) Specific proteolytic cleavage of poly(ADPribose) polymerase: an early marker of chemotherapy-induced apoptosis. Cancer Res. 53, 3976-3985.
  18. Kiechle, F. L. and Zhang, X. (2002) Apoptosis: biochemical aspects and clinical implications. Clin. Chim. Acta 326, 27-45. https://doi.org/10.1016/S0009-8981(02)00297-8
  19. Kim, S. O., Kwon, J. I., Jeong, Y. K., Kim, G. Y., Kim, N. D. and Choi, Y. H. (2007) Induction of Egr-1 is associated with anti-metastatic and anti-invasive ability of b-lapachone in human hepatocarcinoma cells. Biosci. Biotechnol. Biochem. 71, 2169-2176. https://doi.org/10.1271/bbb.70103
  20. Kobayashi, I., Semba, S., Matsuda, Y., Kuroda, Y. and Yokozaki, H. (2006) Significance of Akt phosphorylation on tumor growth and vascular endothelial growth factor expression in human gastric carcinoma. Pathobiology 73, 8-17 https://doi.org/10.1159/000093087
  21. Krishnan, P. and Bastow, K. F. (2000) Novel mechanisms of DNA topoisomerase II inhibition by pyranonaphthoquinone derivativeseleutherin, a lapachone, and b lapachone. Biochem. Pharmacol. 60, 1367-1379. https://doi.org/10.1016/S0006-2952(00)00437-8
  22. Kroemer, G. and Reed, J. C. (2000) Mitochondrial control of cell death. Nat. Med. 6, 513-519. https://doi.org/10.1038/74994
  23. Kung, H. N., Chien, C. L., Chau, G. Y., Don, M. J., Lu, K. S. and Chau, Y. P. (2007) Involvement of NO/cGMP signaling in the apoptotic and anti-angiogenic effects of b-lapachone on endothelial cells in vitro. J. Cell. Physiol. 211, 522-532. https://doi.org/10.1002/jcp.20963
  24. Lee, J. H., Cheong, J., Park, Y. M. and Choi, Y. H. (2005) Down-regulation of cyclooxygenase-2 and telomerase activity by b-lapachone in human prostate carcinoma cells. Pharmacol. Res. 51, 553-560. https://doi.org/10.1016/j.phrs.2005.02.004
  25. Lee, J. I., Choi, D. Y., Chung, H. S., Seo, H. G., Woo, H. J., Choi, B. T. and Choi, Y. H. (2006a) b-lapachone induces growth inhibition and apoptosis in bladder cancer cells by modulation of Bcl-2 family and activation of caspases. Exp. Oncol. 28, 30-35.
  26. Lee, Y. J., Park, S. J., Ciccone, S. L., Kim, C. R. and Lee. S. H. (2006b) An in vivo analysis of MMC-induced DNA damage and its repair. Carcinogenesis 27, 446-453. https://doi.org/10.1093/carcin/bgi254
  27. Li, C. J., Averboukh, L. and Pardee, A B. (1993) b-lapachone, a novel DNA topoisomerase I inhibitor with a mode of action different from camptothecin. J. Biol. Chem. 268, 22463-22468.
  28. Lien, Y. C., Kung, H. N., Lu, K. S., Jeng, C. J. and Chau, Y. P. (2008) Involvement of endoplasmic reticulum stress and activation of MAP kinases in b-lapachone-induced human prostate cancer cell apoptosis. Histol. Histopathol. 23, 1299-1308.
  29. Liu, J. F., Zhou, X. K., Chen, J. H., Yi, G., Chen, H. G., Ba, M. C., Lin, S. Q. and Qi, Y. C. (2010) Up-regulation of PIK3CA promotes metastasis in gastric carcinoma. World J. Gastroenterol. 16, 4986-4991. https://doi.org/10.3748/wjg.v16.i39.4986
  30. Martinou, J. C. and Youle, R. J. (2011) Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev. Cell 21, 92-101. https://doi.org/10.1016/j.devcel.2011.06.017
  31. Moon, D. O., Choi, Y. H., Kim, N. D., Park, Y. M. and Kim, G. Y. (2007) Anti-inflammatory effects of b-lapachone in lipopolysaccharidestimulated BV2 microglia. Int. Immunopharmacol. 7, 506-514. https://doi.org/10.1016/j.intimp.2006.12.006
  32. Moon, D. O., Kang, C. H., Kim, M. O., Jeon, Y. J., Lee, J. D., Choi, Y. H. and Kim, G. Y. (2010) b-lapachone (LAPA) decreases cell viability and telomerase activity in leukemia cells: suppression of telomerase activity by LAPA. J. Med. Food 13, 481-488. https://doi.org/10.1089/jmf.2008.1219
  33. Muller, K., Sellmer, A. and Wiegrebe, W. (1999) Potential antipsoriatic agents: lapacho compounds as potent inhibitors of HaCaT cell growth. J. Nat. Prod. 62, 1134-1136. https://doi.org/10.1021/np990139r
  34. Schuerch, A. R. and Wehrli, W. (1978) b-lapachone, an inhibitor of oncornavirus reverse transcriptase and eukaryotic DNA polymerasealpha. Inhibitory effect, thiol dependence and specificity. Eur. J. Biochem. 84, 197-205. https://doi.org/10.1111/j.1432-1033.1978.tb12157.x
  35. Shiah, S. G., Chuang, S. E., Chau, Y. P., Shen, S. C. and Kuo, M. L. (1999) Activation of c-Jun NH2-terminal kinase and subsequent CPP32/Yama during topoisomerase inhibitor b-lapachone-induced apoptosis through an oxidation-dependent pathway. Cancer Res. 59, 391-398.
  36. Singh, R., Pervin, S. and Chaudhuri, G. (2002) Caspase-8-mediated BID cleavage and release of mitochondrial cytochrome c during Nomega-hydroxy-L-arginine-induced apoptosis in MDA-MB-468 cells. Antagonistic effects of L-ornithine. J. Biol. Chem. 277, 37630-37636. https://doi.org/10.1074/jbc.M203648200
  37. Sitonio, M. M., Carvalho Junior, C. H., Campos Ide, A., Silva, J. B., Lima Mdo, C., Goes, A. J., Maia, M. B., Rolim Neto, P. J. and Silva, T. G. (2013) Anti-inflammatory and anti-arthritic activities of 3,4-dihydro- 2,2-dimethyl-2H-naphthol[1,2-b]pyran-5,6-dione ($\beta$-lapachone). Inflamm. Res. 62, 107-113. https://doi.org/10.1007/s00011-012-0557-0
  38. Tokunaga, E., Oki, E., Egashira, A., Sadanaga, N., Morita, M., Kakeji, Y. and Maehara, Y. (2008) Deregulation of the Akt pathway in human cancer. Curr. Cancer Drug Targets 8, 27-36. https://doi.org/10.2174/156800908783497140
  39. Tzeng, H. P., Ho, F. M., Chao, K. F., Kuo, M. L., Lin-Shiau, S. Y. and Liu, S. H. (2003) $\beta$-Lapachone reduces endotoxin-induced macrophage activation and lung edema and mortality. Am. J. Respir. Crit. Care Med. 168, 85-91. https://doi.org/10.1164/rccm.200209-1051OC
  40. Woo, H. J. and Choi, Y. H. (2005) Growth inhibition of A549 human lung carcinoma cells by b-lapachone through induction of apoptosis and inhibition of telomerase activity. Int. J. Oncol. 26, 1017-1023.
  41. Woo, H. J., Park, K. Y., Rhu, C. H., Lee, W. H., Choi, B. T., Kim, G. Y., Park, Y. M. and Choi, Y. H. (2006) b-lapachone, a quinone isolated from Tabebuia avellanedae, induces apoptosis in HepG2 hepatoma cell line through induction of Bax and activation of caspase. J. Med. Food 9, 161-168. https://doi.org/10.1089/jmf.2006.9.161
  42. Wu, Y. T., Lin, C. Y., Tsai, M. Y., Chen, Y. H., Lu, Y. F., Huang, C. J., Cheng, C. M. and Hwang, S. P. (2011) $\beta$-Lapachone induces heart morphogenetic and functional defects by promoting the death of erythrocytes and the endocardium in zebrafish embryos. J. Biomed. Sci. 18, 70. https://doi.org/10.1186/1423-0127-18-70
  43. Yea, S. S. and Fruman, D. A. (2013) Achieving cancer cell death with PI3K/mTOR-targeted therapies. Ann. N. Y. Acad. Sci. 1280, 15-18. https://doi.org/10.1111/nyas.12028

Cited by

  1. β-lapachone suppresses the proliferation of human malignant melanoma cells by targeting specificity protein 1 vol.35, pp.2, 2016, https://doi.org/10.3892/or.2015.4439
  2. Mechanism of the inhibition of leukemia cell growth and induction of apoptosis through the activation of ATR and PTEN by the topoisomerase inhibitor 3EZ, 20Ac-ingenol vol.39, pp.9, 2015, https://doi.org/10.1016/j.leukres.2015.06.006
  3. Ad-p53 enhances the sensitivity of triple-negative breast cancer MDA-MB-468 cells to the EGFR inhibitor gefitinib vol.33, pp.2, 2015, https://doi.org/10.3892/or.2014.3665
  4. β-Lapachone suppresses neuroinflammation by modulating the expression of cytokines and matrix metalloproteinases in activated microglia vol.12, pp.1, 2015, https://doi.org/10.1186/s12974-015-0355-z
  5. Decreased Poly(ADP-Ribose) Polymerase 1 Expression Attenuates Glucose Oxidase-Induced Damage in Rat Cochlear Marginal Strial Cells vol.53, pp.9, 2016, https://doi.org/10.1007/s12035-015-9469-7
  6. β-lapachone suppresses tumour progression by inhibiting epithelial-to-mesenchymal transition in NQO1-positive breast cancers vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-02937-0
  7. Enhancing Oral Absorption of β-Lapachone: Progress Till Date vol.42, pp.1, 2017, https://doi.org/10.1007/s13318-016-0369-7
  8. Insulin involved Akt/ERK and Bcl-2/Bax pathways against oxidative damages in C6 glial cells vol.36, pp.1, 2016, https://doi.org/10.3109/10799893.2014.970276
  9. Paeoniflorin inhibits human gastric carcinoma cell proliferation through up-regulation of microRNA-124 and suppression of PI3K/Akt and STAT3 signaling vol.21, pp.23, 2015, https://doi.org/10.3748/wjg.v21.i23.7197
  10. Combinative effects of β-Lapachone and APO866 on pancreatic cancer cell death through reactive oxygen species production and PARP-1 activation vol.116, 2015, https://doi.org/10.1016/j.biochi.2015.07.012
  11. Metformin is associated with reduced cell proliferation in human endometrial cancer by inbibiting PI3K/AKT/mTOR signaling vol.34, pp.5, 2018, https://doi.org/10.1080/09513590.2017.1409714
  12. NQO1 is Required for β-Lapachone-Mediated Downregulation of Breast-Cancer Stem-Cell Activity vol.19, pp.12, 2018, https://doi.org/10.3390/ijms19123813
  13. β Lapachone blocks the cell cycle and induces apoptosis in canine osteosarcoma cells vol.38, pp.12, 2018, https://doi.org/10.1590/1678-5150-pvb-5524
  14. Cannabinoid Receptor Type 1 Agonist ACEA Improves Cognitive Deficit on STZ-Induced Neurotoxicity Through Apoptosis Pathway and NO Modulation pp.1476-3524, 2019, https://doi.org/10.1007/s12640-018-9991-2
  15. Apatinib promotes apoptosis of the SMMC-7721 hepatocellular carcinoma cell line via the PI3K/Akt pathway vol.15, pp.4, 2014, https://doi.org/10.3892/ol.2018.8031
  16. Evaluation of cytotoxic potential, oral toxicity, genotoxicity, and mutagenicity of organic extracts of Pityrocarpa moniliformis vol.82, pp.3, 2014, https://doi.org/10.1080/15287394.2019.1576563
  17. Anticancer Potential of Resveratrol, β-Lapachone and Their Analogues vol.25, pp.4, 2014, https://doi.org/10.3390/molecules25040893
  18. Fucoidan Induces Apoptosis in A2058 Cells through ROS-exposed Activation of MAPKs Signaling Pathway vol.26, pp.3, 2014, https://doi.org/10.20307/nps.2020.26.3.191