References
- Brown, M.K., and Naidoo, N. (2012). The endoplasmic reticulum stress response in aging and age-related diseases. Front. Physiol. 3.
- Chen, K.D., Li, Y.S., Kim, M., Li, S., Yuan, S., Chien, S., and Shyy, J.Y. (1999). Mechanotransduction in response to shear stress. Roles of receptor tyrosine kinases, integrins, and Shc. J. Biol. Chem. 274, 18393-18400. https://doi.org/10.1074/jbc.274.26.18393
- Chung, J., Kim, K.H., Lee, S.C., An, S.H., and Kwon, K. (2015). Ursodeoxycholic acid (UDCA) exerts anti-atherogenic effects by inhibiting endoplasmic reticulum (ER) stress induced by disturbed flow. Mol. Cells 38, 851-858. https://doi.org/10.14348/molcells.2015.0094
- Davies, P.F., Civelek, M., Fang, Y., and Fleming, I. (2013). The atherosusceptible endothelium: endothelial phenotypes in complex haemodynamic shear stress regions in vivo. Cardiovasc. Res. 99, 315-327. https://doi.org/10.1093/cvr/cvt101
- Davis, M.E., Grumbach, I.M., Fukai, T., Cutchins, A., and Harrison, D.G. (2004). Shear stress regulates endothelial nitric-oxide synthase promoter activity through nuclear factor kappaB binding. J. Biol. Chem. 279, 163-168. https://doi.org/10.1074/jbc.M307528200
- Ettlinger, C., Schindler, J., and Lehle, L. (1986). Cell-cycle arrest of plant suspension cultures by tunicamycin. Planta 168, 101-105. https://doi.org/10.1007/BF00407015
-
Fleming, I., Bauersachs, J., Fisslthaler, B., and Busse, R. (1998).
$Ca^{2+}$ -independent activation of the endothelial nitric oxide synthase in response to tyrosine phosphatase inhibitors and fluid shear stress. Circ. Res. 82, 686-695. https://doi.org/10.1161/01.RES.82.6.686 - Fujii, J., Wood, K., Matsuda, F., Carneiro-Filho, B.A., Schlegel, K.H., Yutsudo, T., Binnington-Boyd, B., Lingwood, C.A., Obata, F., Kim, K.S., et al. (2008). Shiga toxin 2 causes apoptosis in human brain microvascular endothelial cells via C/EBP homologous protein. Infect Immun. 76, 3679-3689. https://doi.org/10.1128/IAI.01581-07
- Greene, C.M., and McElvaney, N.G. (2010). Protein misfolding and obstructive lung disease. Proc. Am. Thorac. Soc. 7, 346-355. https://doi.org/10.1513/pats.201002-019AW
- Guo, D., Chien, S., and Shyy, J.Y. (2007). Regulation of endothelial cell cycle by laminar versus oscillatory flow: distinct modes of interactions of AMP-activated protein kinase and Akt pathways. Circ. Res. 100, 564-571. https://doi.org/10.1161/01.RES.0000259561.23876.c5
- Hahn, C., and Schwartz, M.A. (2009). Mechanotransduction in vascular physiology and atherogenesis. Nat. Rev. Mol. Cell. Biol. 10, 53-62. https://doi.org/10.1038/nrm2596
- Kim, M., Kim, S., Lim, J.H., Lee, C., Choi, H.C., and Woo, C.H. (2012). Laminar flow activation of ERK5 protein in vascular endothelium leads to atheroprotective effect via NF-E2-related factor 2 (Nrf2) activation. J. Biol. Chem. 287, 40722-40731. https://doi.org/10.1074/jbc.M112.381509
- Kuchan, M.J., Jo, H., and Frangos, J.A. (1994). Role of G proteins in shear stress-mediated nitric oxide production by endothelial cells. Am. J. Physiol. 267, C753-758. https://doi.org/10.1152/ajpcell.1994.267.3.C753
- Lenna, S., Han, R., and Trojanowska, M. (2014). Endoplasmic reticulum stress and endothelial dysfunction. IUBMB Life 66, 530-537. https://doi.org/10.1002/iub.1292
- Li, Y.S., Haga, J.H., and Chien, S. (2005). Molecular basis of the effects of shear stress on vascular endothelial cells. J. Biomech. 38, 1949-1971. https://doi.org/10.1016/j.jbiomech.2004.09.030
- Malek, A.M., Alper, S.L., and Izumo, S. (1999). Hemodynamic shear stress and its role in atherosclerosis. Jama 282, 2035-2042. https://doi.org/10.1001/jama.282.21.2035
- Nigro, P., Abe, J., and Berk, B.C. (2011). Flow shear stress and atherosclerosis: a matter of site specificity. Antioxidants & Redox Signaling 15, 1405-1414. https://doi.org/10.1089/ars.2010.3679
- Oslowski, C.M., and Urano, F. (2011). Measuring ER stress and the unfolded protein response using mammalian tissue culture system. Method. Enzymol. 490, 71-92.
- Schroder, M., and Kaufman, R.J. (2005). ER stress and the unfolded protein response. Mutat. Res. 569, 29-63. https://doi.org/10.1016/j.mrfmmm.2004.06.056
- Shiojima, I., and Walsh, K. (2002). Role of Akt signaling in vascular homeostasis and angiogenesis. Circ. Res. 90, 1243-1250. https://doi.org/10.1161/01.RES.0000022200.71892.9F
- Szegezdi, E., Logue, S.E., Gorman, A.M., and Samali, A. (2006). Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep. 7, 880-885. https://doi.org/10.1038/sj.embor.7400779
- Tabas, I. (2010). The role of endoplasmic reticulum stress in the progression of atherosclerosis. Circ. Res. 107, 839-850. https://doi.org/10.1161/CIRCRESAHA.110.224766
- Takabe, W., Jen, N., Ai, L., Hamilton, R., Wang, S., Holmes, K., Dharbandi, F., Khalsa, B., Bressler, S., Barr, M.L., et al. (2011). Oscillatory shear stress induces mitochondrial superoxide production: implication of NADPH oxidase and c-Jun NH2-terminal kinase signaling. Antioxid. Redox Sign. 15, 1379-1388. https://doi.org/10.1089/ars.2010.3645
- Vai, M., Popolo, L., and Alberghina, L. (1987). Effect of tunicamycin on cell cycle progression in budding yeast. Exp. Cell Res. 171, 448-459. https://doi.org/10.1016/0014-4827(87)90176-5
- van Thienen, J.V., Fledderus, J.O., Dekker, R.J., Rohlena, J., van Ijzendoorn, G.A., Kootstra, N.A., Pannekoek, H., and Horrevoets, A.J. (2006). Shear stress sustains atheroprotective endothelial KLF2 expression more potently than statins through mRNA stabilization. Cardiovasc. Res. 72, 231-240. https://doi.org/10.1016/j.cardiores.2006.07.008
- Xiao, Z., Zhang, Z., Ranjan, V., and Diamond, S.L. (1997). Shear stress induction of the endothelial nitric oxide synthase gene is calcium-dependent but not calcium-activated. J. Cell. Physiol. 171, 205-211. https://doi.org/10.1002/(SICI)1097-4652(199705)171:2<205::AID-JCP11>3.0.CO;2-C
- Yan, C., Takahashi, M., Okuda, M., Lee, J.D., and Berk, B.C. (1999). Fluid shear stress stimulates big mitogen-activated protein kinase 1 (BMK1) activity in endothelial cells. Dependence on tyrosine kinases and intracellular calcium. J. Biol. Chem. 274, 143-150. https://doi.org/10.1074/jbc.274.1.143
- Zeng, L., Zampetaki, A., Margariti, A., Pepe, A.E., Alam, S., Martin, D., Xiao, Q., Wang, W., Jin, Z.G., Cockerill, G., et al. (2009). Sustained activation of XBP1 splicing leads to endothelial apoptosis and atherosclerosis development in response to disturbed flow. Proc. Natl. Acad. Sci. USA 106, 8326-8331. https://doi.org/10.1073/pnas.0903197106
- Zinszner, H., Kuroda, M., Wang, X., Batchvarova, N., Lightfoot, R.T., Remotti, H., Stevens, J.L., and Ron, D. (1998). CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes. Dev. 12, 982-995. https://doi.org/10.1101/gad.12.7.982
Cited by
- The inhibition of Bax activation-induced apoptosis by RasGRP2 via R-Ras-PI3K-Akt signaling pathway in the endothelial cells vol.9, pp.None, 2019, https://doi.org/10.1038/s41598-019-53419-4
- Atorvastatin Protects Against Cerebral Aneurysmal Degenerative Pathology by Promoting Endothelial Progenitor Cells (EPC) Mobilization and Attenuating Vascular Deterioration in a Rat Model vol.25, pp.None, 2019, https://doi.org/10.12659/msm.915005
- Endoplasmic Reticulum Stress: A Critical Molecular Driver of Endothelial Dysfunction and Cardiovascular Disturbances Associated with Diabetes vol.20, pp.7, 2018, https://doi.org/10.3390/ijms20071658
- ATF6 regulates the development of chronic pancreatitis by inducing p53-mediated apoptosis vol.10, pp.9, 2018, https://doi.org/10.1038/s41419-019-1919-0
- Fibroblast Growth Factor 2 Attenuates Renal Ischemia-Reperfusion Injury via Inhibition of Endoplasmic Reticulum Stress vol.8, pp.None, 2020, https://doi.org/10.3389/fcell.2020.00147
- Low shear stress regulates vascular endothelial cell pyroptosis through miR‐181b‐5p/STAT‐3 axis vol.236, pp.1, 2018, https://doi.org/10.1002/jcp.29844
- Melatonin Attenuates ox-LDL-Induced Endothelial Dysfunction by Reducing ER Stress and Inhibiting JNK/Mff Signaling vol.2021, pp.None, 2018, https://doi.org/10.1155/2021/5589612
- Curcumin in Combination with Aerobic Exercise Improves Follicular Dysfunction via Inhibition of the Hyperandrogen-Induced IRE1α/XBP1 Endoplasmic Reticulum Stress Pathway in PCOS-Like Rats vol.2021, pp.None, 2018, https://doi.org/10.1155/2021/7382900
- Role of PI3K in the Progression and Regression of Atherosclerosis vol.12, pp.None, 2018, https://doi.org/10.3389/fphar.2021.632378
- Relapse of pathological angiogenesis: functional role of the basement membrane and potential treatment strategies vol.53, pp.2, 2018, https://doi.org/10.1038/s12276-021-00566-2
- The Role of RASGRP2 in Vascular Endothelial Cells-A Mini Review vol.22, pp.20, 2018, https://doi.org/10.3390/ijms222011129
- Mechanism of cell death of endothelial cells regulated by mechanical forces vol.131, pp.None, 2018, https://doi.org/10.1016/j.jbiomech.2021.110917