• 제목/요약/키워드: PI

검색결과 7,013건 처리시간 0.036초

Changes in oligosaccharide content during the storage period of maesil cheong formulated with functional oligosaccharides (기능성 올리고당으로 제조한 매실청의 저장기간 중 올리고당 함량 변화)

  • Bae, Moon-Joo;Yoo, Sang-Ho
    • Korean Journal of Food Science and Technology
    • /
    • 제51권2호
    • /
    • pp.169-175
    • /
    • 2019
  • This study was carried out to produce the health functional food maesil cheong by replacing sucrose with isomaltooligosaccharide and fructooligosaccharide. The substitution levels of these oligosaccharides were between 10% and 100%. A 1:1 (w/w) mixture of maesil and sugar was adopted for preparing maesil cheong. The pH of maesil cheong remained unchanged (between 2.72 and 3.00) during 90-day storage period, regardless of oligosaccharide content. Citric and malic acids were identified in maesil cheong; citric acid accounted for 71-82% of the total organic acid content. Sucrose was completely liquefied in the sample after 30 days and was hydrolyzed steadily into fructose and glucose over the storage period. More than 75% of isomaltooligosaccharides remained in maesil cheong after 90 days when sucrose was completely replaced with isomaltooligosaccharide. However, fructooligosaccharides were mostly decomposed at the end of storage period. Thus, isomaltooligosaccharides may be suitable for acidic maesil cheong products to expect its health functional effect.

Tenebrio molitor (Mealworm) Extract Improves Insulin Sensitivity and Alleviates Hyperglycemia in C57BL/Ksj-db/db Mice (C57BL/Ksj-db/db 제 2형 당뇨모델을 이용한 갈색거저리 유충(밀웜) 추출물의 인슐린 감수성 및 혈당개선효과)

  • Kim, Seon Young;Park, Jae Eun;Han, Ji Sook
    • Journal of Life Science
    • /
    • 제29권5호
    • /
    • pp.570-579
    • /
    • 2019
  • Diabetes is one of the serious chronic metabolic diseases caused by Westernized eating habits, and the goal of diabetes treatment is to keep blood glucose at a normal level and prevent diabetic complications. This study was designed to investigate the anti-diabetic effects of a mealworm (Tenebrio molitor larva) extract (MWE) on hyperglycemia in an animal model with type 2 diabetes. Diabetic C57BL/Ksj-db/db mice were divided into three groups: diabetic control, rosiglitazone, and MWE. The mice supplemented with MWE showed significantly lower blood levels of glucose and glycosylated hemoglobin when compared with the diabetic control mice. The homeostatic index of insulin resistance was significantly lower in mice supplemented with MWE than in diabetic control mice. MWE supplementation significantly stimulated the phosphorylation of insulin receptor substrate-1 and Akt, and activation of phosphatidylinositol 3-kinase in insulin signaling pathway of skeletal muscles. Eventually, MWE increased the expression of the plasma membrane glucose transporter 4 (GLUT4) via PI3K/Akt activation. These findings demonstrate that the increase in plasma membrane GLUT4 expression by MWE promoted the uptake of blood glucose into cells and relieved hyperglycemia in skeletal muscles of diabetic C57BL/Ksj-db/db mice. Therefore, mealworms are expected to prove useful for the prevention and treatment of diabetes, and further studies are needed to improve type 2 diabetes in the future.

Microbial community analysis of an eco-friendly recirculating aquaculture system for olive flounder (Paralichthys olivaceus) using complex microbial probiotics (복합미생물 프로바이오틱을 이용한 환경친화적 넙치 순환여과양식시스템에서의 미생물군집 분석)

  • Rhee, Chaeyoung;Kim, Haham;Emmanuel, S. Aalfin;Kim, Hong-Gi;Won, Seonghun;Bae, Jinho;Bai, Sungchul C.;Koh, Sung-Cheol
    • Korean Journal of Microbiology
    • /
    • 제54권4호
    • /
    • pp.369-378
    • /
    • 2018
  • This study was conducted to evaluate effects of dietary microbial probiotics on the growth and disease resistance of olive flounder (Paralichthys olivaceus) in a recirculating aquaculture system (RAS), and the effects of the probiotic bioaugmentation on the microbial community structure and water quality. For the analysis, 80 juvenile fish (average weight, $25.7{\pm}7.6g$; average length, $15.2{\pm}1.7cm$) were fed a basal diet containing a commercial microbial product CES-AQ1 (CES; $1{\times}10^9\;CFU/kg$ diet) in an RAS for 8 weeks. Weight gain, the specific growth rate, feed efficiency, and protein efficiency ratio of the fish fed the CES diet in the RAS were 1.5~2.5 times higher than those of fish fed the basal diet alone, or the basal diet containing oxytetracycline (OTC), yeast plus bacterium, or Bacillus subtilis in a still water system. There was no significant difference in the pathogen challenge test between fish fed the OTC diet and fish fed the CES diet in the RAS, suggesting the CES-AQ1 probiotic used in the RAS as a potential replacement for antibiotics. The RAS biofilter maintained the highest microbial diversity and appeared to harbor microbial communities with ammonium oxidation, denitrification, and fish pathogen suppression functions. Ammonia, which is hazardous to fish, was significantly decreased to < 0.5 mg/L in 19 days, indicating the effectiveness of probiotic supplementation to maintain good water quality in RAS. These results suggest that the intestinal microbial communities of fish are stabilized by a probiotic-containing diet (CES) and that bioaugmentation with probiotics may be an eco-friendly and economical supplement for aquaculture of olive flounder, promoting both good water quality and fish health in an RAS.

Growth and Fruiting Characteristics, and Nut Qualities of Castanea crenata by Low-Concentrated Liquid Fertilizer (저농도 액비처리에 따른 밤나무 생장 및 결실특성과 과실품질)

  • Lee, Uk;Hwang, Suk-In;Kim, Mahn-Jo;Kim, Ji-Hye
    • Journal of Korean Society of Forest Science
    • /
    • 제100권3호
    • /
    • pp.432-440
    • /
    • 2011
  • The objective of this study was to investigate growth and fruiting characteristics (e.g., nut qualities) of chestnut (Castanea cerenata) after applying various fertilizer treatments at the cultivation site in Suncheon. Fertilizer treatments were designed as follow: liquid fertilizer, chemical fertilizer, organic fertilizer, and control. Both liquid and chemical fertilizer treatments provided the best growth in height and basal diameter. In addition, these two treatments were very effective for crown width of the trees between both east-west and north-south orientation. The liquid fertilizer treatment was effective on total length of the fruiting branch and length of the bearing to terminate part. Both liquid and chemical fertilizer treatments produced the longest length of basal to bearing part compared to the other two treatments. The liquid fertilizer treatment showed the most thickened basal diameter of the fruiting branch and the greatest diameter of above and below the bearing burr part. Elongation Index of the fruiting branch (EI) was the highest with liquid fertilizer treatment and the remaining four indices (Production Index of fruiting branch, PI; Ratio of Diameter between below and above bearing burr part, RD; Growth Index of fruiting branch diameter, GI; Thickness Index of fruiting branch or dormant branch, TI) were the highest with the chemical fertilizer treatment. Total number of produced branch per fruiting mother branch and number of small and weak branches per fruiting mother branch were highest on the control and liquid fertilizer treatment; however, all treatments produced similar numbers. The chemical and organic fertilizer treatments produced a high number of fruiting branches per fruiting mother branch, while organic and liquid fertilizer treatments produced a high number of burr per fruiting branch. The rate of commercializing on the basis of nut weight and quantity was higher on control (87.5%) than chemical fertilizer treatment (84.6%); however, the rate was even lower on liquid fertilizer treatment (84.3%) and organic fertilizer treatment (82.7%). The liquid fertilizer treatment showed the highest average of nut weight, while chemical fertilizer treatment showed the highest average number of fruiting burr. There was no significant difference in average number of normal nuts per burr among treatments. The yield per tree was high on chemical (8.2 kg) and liquid (8.0 kg) fertilizer treatments, but there was no significant difference among treatments. In the rate of nut grade on the basis of nut weight and quantity, the liquid fertilizer treatment, 43.5% and 34.3% more than large nut respectively, produced higher value chestnuts compared to other treatments.

Photosynthesis, Growth and Yield Characteristics of Peucedanum japonicum T. Grown under Aquaponics in a Plant Factory (식물공장형 아쿠아포닉스에서 산채 갯기름의 광합성, 생육 및 수량 특성)

  • Lee, Hyoun-Jin;Choi, Ki-Young;Chiang, Mae-Hee;Choi, Eun-Young
    • Journal of Bio-Environment Control
    • /
    • 제31권1호
    • /
    • pp.67-76
    • /
    • 2022
  • This study aimed to determine the photosynthesis and growth characteristics of Peucedanum japonicum T. grown under aquaponics in a plant factory (AP) by comparing those grown under hydroponic cultivation system (HP). The AP system raised 30 fishes at a density of 10.6 kg·m-3 in a 367.5 L tank, and at HP, nutrient solution was controlled with EC 1.3 dS·m-1 and pH 6.5. The pH level ranged from 4.0 to 7.1 for the AP system and 4.0 to 7.4 for the HP system. The pH level in the AP began to decrease with an increase in nitrate nitrogen (NO3-N) and lasted bellower than pH 5.5 for 15-67 DAT. It was found that ammonium nitrogen (NH4-N) continued to increase even under low pH conditions. EC was maintained at 1.3 to 1.5 dS·m-1 in both systems. The concentration of major mineral elements in the fish tank was higher than that of the hydroponics, except for K and Mg. There was no significant difference in the photosynthesis characteristics, but the PIABS parameters were 30.4% lower in the AP compared to the HP at the 34DAT and 12.0% lower at the 74DAT. There was no significant difference in the growth characteristics, but the petiole length was 56% longer in the leaf grown under the AP system. While there was no significant difference in the fresh and dry weights of leaf and root, the leaf area ratio was 36.43% higher in the AP system. All the integrated results suggest that aquaponics is a highly-sustainable farming to safely produce food by recycling agricultural by-products, and to produce Peucedanum japonicum as much as hydroponics under a proper fish density and pH level.

Forward Osmotic Pressure-Free (△𝜋≤0) Reverse Osmosis and Osmotic Pressure Approximation of Concentrated NaCl Solutions (정삼투-무삼투압차(△𝜋≤0) 법 역삼투 해수 담수화 및 고농도 NaCl 용액의 삼투압 근사식)

  • Chang, Ho Nam;Choi, Kyung-Rok;Jung, Kwonsu;Park, Gwon Woo;Kim, Yeu-Chun;Suh, Charles;Kim, Nakjong;Kim, Do Hyun;Kim, Beom Su;Kim, Han Min;Chang, Yoon-Seok;Kim, Nam Uk;Kim, In Ho;Kim, Kunwoo;Lee, Habit;Qiang, Fei
    • Membrane Journal
    • /
    • 제32권4호
    • /
    • pp.235-252
    • /
    • 2022
  • Forward osmotic pressure-free reverse osmosis (Δ𝜋=0 RO) was invented in 2013. The first patent (US 9,950,297 B2) was registered on April 18, 2018. The "Osmotic Pressure of Concentrated Solutions" in JACS (1908) by G.N. Lewis of MIT was used for the estimation. The Chang's RO system differs from conventional RO (C-RO) in that two-chamber system of osmotic pressure equalizer and a low-pressure RO system while C-RO is based on a single chamber. Chang claimed that all aqueous solutions, including salt water, regardless of its osmotic pressure can be separated into water and salt. The second patent (US 10.953.367B2, March 23, 2021) showed that a low-pressure reverse osmosis is possible for 3.0% input at Δ𝜋 of 10 to 12 bar. Singularity ZERO reverse osmosis from his third patent (Korea patent 10-22322755, US-PCT/KR202003595) for a 3.0% NaCl input, 50% more water recovery, use of 1/3 RO membrane area, and 1/5th of theoretical energy. These numbers come from Chang's laboratory experiments and theoretical analysis. Relative residence time (RRT) of feed and OE chambers makes Δ𝜋 to zero or negative by recycling enriched feed flow. The construction cost by S-ZERO was estimated to be around 50~60% of the current RO system.

Physiological and Growth Responses of M. thunbergii to Different Levels of Fertilization (시비처리에 따른 후박나무의 생리 및 생장 반응)

  • Jung-Won Sung;Yeong Geun Song;Haeun Koo;Hyeon Hwa Kim;Se Min Byun;Chae Rim Lee;Seok-Gon Park;Kyeong Cheol Lee
    • Korean Journal of Plant Resources
    • /
    • 제36권2호
    • /
    • pp.172-180
    • /
    • 2023
  • In the current study, four groups; control, 500, 1000, and 2000 mg/L, were treated to investigate the effects of physiological and growth characteristics on Machilus thunbergii under various fertilization levels. As a result of the physiological response to the fertilization treatment, the fertilized group demonstrated relatively higher levels of A, ITE, WUEi, Vcamx, PIabs, and SFIabs in comparison to the control. The best photosynthetic mechanism was most clearly seen at 1000 mg/L, which involved gas exchange through active stomatal opening and closing. For a productive photosynthetic mechanism. As seen in the growth response of M. thunbergii to fertilization treatment, the fertilized group has significantly higher height, DRC, leaf dry weight, stem dry weight, total dry weight, LWR, and SWR than the control group. A healthy seedling quality index was particularly evident at 1000 mg/L, and other growth indicators were also at a decent level. 500 mg /L also demonstrated growth characteristics that were comparable to those at 1000 mg/L. As a result, M. thunbergii featured the best physiological and growth characteristics in response to the fertilization treatment at 1000 mg/L, and 500 mg/L also showed a similar trend, which is considered to be a good option from an economical perspective.

Estimation of potential distribution of sweet potato weevil (Cylas formicarius) and climate change impact using MaxEnt (MaxEnt를 활용한 개미바구미(Cylas formicarius)의 잠재 분포와 기후변화 영향 모의)

  • Jinsol Hong;Heewon Hong;Sumin Pi;Soohyun Lee;Jae Ha Shin;Yongeun Kim;Kijong Cho
    • Korean Journal of Environmental Biology
    • /
    • 제41권4호
    • /
    • pp.505-518
    • /
    • 2023
  • The key to invasive pest management lies in preemptive action. However, most current research using species distribution models is conducted after an invasion has occurred. This study modeled the potential distribution of the globally notorious sweet potato pest, the sweet potato weevil(Cylas formicarius), that has not yet invaded Korea using MaxEnt. Using global occurrence data, bioclimatic variables, and topsoil characteristics, MaxEnt showed high explanatory power as both the training and test areas under the curve exceeded 0.9. Among the environmental variables used in this study, minimum temperature in the coldest month (BIO06), precipitation in the driest month (BIO14), mean diurnal range (BIO02), and bulk density (BDOD) were identified as key variables. The predicted global distribution showed high values in most countries where the species is currently present, with a significant potential invasion risk in most South American countries where C. formicarius is not yet present. In Korea, Jeju Island and the southwestern coasts of Jeollanam-do showed very high probabilities. The impact of climate change under shared socioeconomic pathway (SSP) scenarios indicated an expansion along coasts as climate change progresses. By applying the 10th percentile minimum training presence rule, the potential area of occurrence was estimated at 1,439 km2 under current climate conditions and could expand up to 9,485 km2 under the SSP585 scenario. However, the model predicted that an inland invasion would not be serious. The results of this study suggest a need to focus on the risk of invasion in islands and coastal areas.

Comparison of Seedling Quality of Cucumber Seedlings and Growth and Production after Transplanting according to Differences in Seedling Production Systems (육묘 생산 시스템 차이에 따른 오이 모종의 묘소질과 정식 후 생육 비교)

  • Soon Jae Hyeon;Hwi Chan Yang;Young Ho Kim;Yun Hyeong Bae;Dong Cheol Jang
    • Journal of Bio-Environment Control
    • /
    • 제33권2호
    • /
    • pp.88-98
    • /
    • 2024
  • This study provides basic data on the growth and production of seedlings produced in plant factories with artificial lighting by comparing seedling quality, growth and fruit characteristics, and production after transplanting cucumber seedlings according to environmental differences between plant factories with artificial lighting and conventional nurseries in greenhouse. The control group consisted of greenhouse seedlings (GH) grown in the conventional nursery before transplanting. Plant factory to greenhouse seedlings (PG) were grown for 9 days in a plant factory with artificial lighting and for 13 days in an conventional nursery. Plant factory seedlings (PF) were grown in a plant factory with artificial lighting for 22 days until planting. In terms of seedling quality, PFs had the highest relative growth rate and compactness and the best root zone development. After transplanting PFs tended to grow faster, the first harvest date was 2 days earlier than that of GHs, and the growing season ended 1 day earlier. The female flower flowering rate of the PFs was high, and the fruit set rate was of PF the lowest. The production per unit area was highest for PFs at 10.23kg Performance index on the absorption basis, the most sensitive chlorophyll fluorescence parameter, was highest at 4.14 for PFs at 4 weeks after transplantation. By comparing the maximum quantum yield of primary PS II photochemistry and dissipated energy flux per PS II reaction center electron at 4 weeks after transplantation, PFs tended to be the least stressed. PFs had the best seedling quality, growth, and production after planting, and fruit quality was consistent with that of greenhouse seedlings. Therefore, plant factory seedlings can be used in the field.

Nitrogen Removal Rate of A Subsurface Flow Treatment Wetland System Constructed on Floodplain During Its Initial Operating Stage (하천고수부지 수질정화 여과습지의 초기운영단계 질소제거)

  • Yang, Hong-Mo
    • Korean Journal of Environmental Agriculture
    • /
    • 제22권4호
    • /
    • pp.278-283
    • /
    • 2003
  • This study was carried out to examine the nitrogen removal rate of a subsurface-flow treatment wetland system which was constructed on floodplain of the Kwangju River from May to June 2001. Its dimensions were 29m in length, 9m in width and 0.65m in depth. A bottom layer of 45cm in depth was filled with crushed granite with about $15{\sim}30\;mm$ in diameter and a middle layer of 10cm in depth had pea pebbles with about 10 mm in diameter. An upper layer of 5 cm in depth contained course sand. Reeds (Phragmites australis) were transplanted on the surface of the system. They were dug out of natural wetlands and stems were cut at about 40 cm height from their bottom ends. Water of the Kwangju River flowed into it via a pipe by gravity flow and its effluent was funneled back into the river. The height of reed stems was 44.2 cm in July 2001 and 75.3cm in September 2001. The number of stems was increased from $80\;stems/m^2$ in July 2001 to $136\;stems/m^2$ in September 2001. Volume and water quality of inflow and outflow were analyzed from July 2001 through December 2001. Inflow and outflow averaged 40.0 and $39.2\;m^3/day$, respectively. Hydraulic detention time was about 1.5 days. Average nitrogen uptake by reeds was $69.31\;N\;mg/m^2/day$. Removal rate of $NO_3-N$, $NH_3-N$, T-N averaged 195.58, 53.65, and $628.44\;mg/m^2/day$, respectively. Changes of $NO_3-N$ and $NH_3-N$ abatement rates were closely related to those of wetland temperatures. The lower removal rate of nitrogen species compared with that of subsurface-flow wetlands operating in North America could be attributed to the initial stage of the system and inclusion of two cold months into the six-month monitoring period. Increase of standing density of reeds within a few years will develop both root zones suitable for the nitrification of ammonia and surface layer substrates beneficial to the denitrification of nitrates into nitrogen gases, which may lead to increment in the nitrogen retention rate.