DOI QR코드

DOI QR Code

Tenebrio molitor (Mealworm) Extract Improves Insulin Sensitivity and Alleviates Hyperglycemia in C57BL/Ksj-db/db Mice

C57BL/Ksj-db/db 제 2형 당뇨모델을 이용한 갈색거저리 유충(밀웜) 추출물의 인슐린 감수성 및 혈당개선효과

  • Kim, Seon Young (Department of Food Science and Nutrition, Pusan National University) ;
  • Park, Jae Eun (Department of Food Science and Nutrition, Pusan National University) ;
  • Han, Ji Sook (Department of Food Science and Nutrition, Pusan National University)
  • 김선영 (부산대학교 식품영양학과) ;
  • 박재은 (부산대학교 식품영양학과) ;
  • 한지숙 (부산대학교 식품영양학과)
  • Received : 2019.04.24
  • Accepted : 2019.05.13
  • Published : 2019.05.30

Abstract

Diabetes is one of the serious chronic metabolic diseases caused by Westernized eating habits, and the goal of diabetes treatment is to keep blood glucose at a normal level and prevent diabetic complications. This study was designed to investigate the anti-diabetic effects of a mealworm (Tenebrio molitor larva) extract (MWE) on hyperglycemia in an animal model with type 2 diabetes. Diabetic C57BL/Ksj-db/db mice were divided into three groups: diabetic control, rosiglitazone, and MWE. The mice supplemented with MWE showed significantly lower blood levels of glucose and glycosylated hemoglobin when compared with the diabetic control mice. The homeostatic index of insulin resistance was significantly lower in mice supplemented with MWE than in diabetic control mice. MWE supplementation significantly stimulated the phosphorylation of insulin receptor substrate-1 and Akt, and activation of phosphatidylinositol 3-kinase in insulin signaling pathway of skeletal muscles. Eventually, MWE increased the expression of the plasma membrane glucose transporter 4 (GLUT4) via PI3K/Akt activation. These findings demonstrate that the increase in plasma membrane GLUT4 expression by MWE promoted the uptake of blood glucose into cells and relieved hyperglycemia in skeletal muscles of diabetic C57BL/Ksj-db/db mice. Therefore, mealworms are expected to prove useful for the prevention and treatment of diabetes, and further studies are needed to improve type 2 diabetes in the future.

당뇨병은 서구화된 식습관으로 발생하는 심각한 만성대사질환의 하나이며, 당뇨병의 치료는 혈당을 정상적인 수준으로 유지하며 당뇨 합병증을 예방하는 것이다. 따라서 본 연구는 당뇨병 및 인슐린 저항성에 대한 유전적 분석에 널리 이용되는 C57BL/Ksj-db/db 당뇨동물모델을 이용하여 갈색거저리 유충(밀웜) 추출물의 6주간 섭취가 혈당개선에 미치는 영향에 대해 조사하고 이에 인슐린 민감성 개선과 당대사 조절을 통한 항당뇨 효과를 규명하고자 하였다. 제 2형 당뇨동물모델 실험 결과, db/db-MWE군(식이 0.5%)이 db/db-control군에 비해 유의적(p<0.05)으로 혈당이 감소하였다. 약물군인 db/db-RG군(식이 0.05%)은 부작용에 의해 눈에 띄게 체중이 증가하였으나, db/db-MWE군에서는 약물군에서의 체중증가와 같은 큰 부작용 없이 혈당 감소효과를 나타내었다. HbA1c와 혈장인슐린 농도의 경우 db/db-control군에 비해 db/db-MWE군이 유의적(p<0.05)으로 낮았다. 또한 골격근에서 p-IRS, p-AKT, PM-GLUT4의 발현을 확인한 결과, db/db-MWE군에서 db/db-control군에 비해 p-IRS, p-AKT, PM-GLUT4의 발현이 증가된 것을 알 수 있었다. 이는 밀웜 추출물의 섭취가 골격근 내로 당이 원활이 유입되도록 도와주어 인슐린 민감성을 개선시키며, 고혈당 증상을 개선시킨 것으로 사료된다. 밀웜 추출물을 식이에 0.5% 첨가하여 6주간 C57BL/Ksj-db/db 당뇨동물모델에 제공한 결과, 공복혈당과 HbA1c의 감소 및 인슐린 저항성을 개선시켰다. 이는 인슐린 민감성을 증가시키고, 당 대사 조절을 통해 고혈당 증상의 완화에 기인한 것으로 보인다. 따라서 밀웜은 당뇨병의 예방과 치료에 유용한 소재가 될 것으로 기대되며, 향후 제 2형 당뇨병 개선을 위해 더욱 다양한 연구가 이루어져야 할 것으로 사료된다.

Keywords

SMGHBM_2019_v29n5_570_f0001.png 이미지

Fig. 1. Weekly changes in body weight in C57BL/KsJdb/db mice supplemented with mealworm extract.

SMGHBM_2019_v29n5_570_f0004.png 이미지

Fig. 3. The effects of supplmentation with MWE on blood glycosylated hemoglobin levels and markers of insulin resistance in C57BL/KsJ-db/db mice.

SMGHBM_2019_v29n5_570_f0005.png 이미지

Fig. 4. The effects of supplementation with MWE on intraperitoneal glucose tolerance tests in C57 BL/KsJ- db/db mice.

SMGHBM_2019_v29n5_570_f0006.png 이미지

Fig. 5. The effect of MWE supplementation on pIRS-1, IRS-1, PI3K, pAkt, and Akt protein expression in skeletal muscle of C57BL/KsJ-db/db mice.

SMGHBM_2019_v29n5_570_f0007.png 이미지

Fig. 6. The effect of MWE supplementation on PM-GLUT4 and GLUT4 protein expression in skeletal muscle of C57BL/KsJ-db/db mice.

SMGHBM_2019_v29n5_570_f0008.png 이미지

Fig. 2. Weekly changes in blood glucose levels in C57BL/KsJ-db/db mice supplemented with mealworm extract.

Table 1. Ingredient composition of the experimental diets supplemented to mice

SMGHBM_2019_v29n5_570_t0001.png 이미지

Table 2. The effects of supplmentation with MWE on food consumption and drinking water intake of C57BL/KsJdb/db mice

SMGHBM_2019_v29n5_570_t0002.png 이미지

References

  1. Akash, M. S. H., Rehman, K., Sun, H. and Chen, S. 2013. Interleukin-1 receptor antagonist improves normoglycemia and insulin sensitivity in diabetic Goto-Kakizaki-rats. Eur. J. Pharmacol. 701, 87-95. https://doi.org/10.1016/j.ejphar.2013.01.008
  2. Baron, A. D., Zhu, J. S., Zhu, J. H., Weldon, H., Maianu, L. and Garvey, W. T. 1995. Glucosamine induces insulin resistance in vivo by affecting GLUT4 translocation in skeletal muscle: Implications for glucose toxicity. J. Clin. Invest. 96, 2792-2801. https://doi.org/10.1172/JCI118349
  3. Baus, D., Heermeier, K., De, H. M., Metz-Weidmann, C., Gassenhuber, J, Dittrich, W., Welte, S. and Tennagels, N. 2008. Identification of a novel AS160 splice variant that regulates GLUT4 translocation and glucose-uptake in rat muscle cells. Cell Signal. 20, 2237-2246. https://doi.org/10.1016/j.cellsig.2008.08.010
  4. Chatterjee, S., Khunti, K. and Davies, M. J. 2017. Type 2 diabetes. Lancet 389, 2239-2251. https://doi.org/10.1016/S0140-6736(17)30058-2
  5. Durbin, R. J. 2004. Thiazolidinedione therapy in the prevention/delay of type 2 diabetes in patients with impaired glucose tolerance and insulin resistance. Diabetes Obes. Metab. 6, 280-285. https://doi.org/10.1111/j.1462-8902.2004.0348.x
  6. Duttaa, P., Dey, T., Dihingia, A., Manna, P. and Kalita, J. 2017. Antioxidant and glucose metabolizing potential of edible insect, Brachytrupes orientalis via modulating Nrf2/AMPK/GLUT4 signaling pathway. Biomed. Pharmacother. 95, 556-563. https://doi.org/10.1016/j.biopha.2017.08.094
  7. Goldstein, B. J. 2002. Insulin resistance as the core defect in type 2 diabetes mellitus. Am. J. Cardiol. 90, 3-10. https://doi.org/10.1016/S0002-9149(02)02553-5
  8. Gonzalez-Periz, A., Horrillo, R., Ferre, N., Gronert, K., Dong, B., Moran-Salvador, E., Titos, E. Martinez-Clemente, M., Lopez-Parra, M., Arroyo, V. and Claria, J. 2009. Obesityinduced insulin resistance and hepatic steatosis are alleviated by omega-3 fatty acids: a role for resolvins and protectins. FASEB J. 23, 1946-1957. https://doi.org/10.1096/fj.08-125674
  9. Ha, B. G., Park, J. E. and Shon, Y. H. 2016. Stimulatory effect of balanced deep-sea water containing chitosan oligosaccharides on glucose uptake in C2C12 myotubes. Mar. Biotechnol. (NY). 18, 475-484. https://doi.org/10.1007/s10126-016-9709-5
  10. Hartweg, J., Farmer, A. J., Holman, R. R. and Neil, A. 2009. Potential impact of omega-3 treatment on cardiovascular disease in type 2 diabetes. Curr. Opin. Lipidol. 20, 30-38. https://doi.org/10.1097/MOL.0b013e328321b3be
  11. Hu, X., Wang, S., Xu, J., Wang, D. B., Chen, Y. and Yang, G. Z. 2014. Triterpenoid saponins from Stauntonia chinensis ameliorate insulin resistance via the AMP-activated protein kinase and IR/IRS-1/PI3K/AKT pathways in insulin-resistant HepG2 cells. Int. J. Mol. Sci. 15, 10446-10458. https://doi.org/10.3390/ijms150610446
  12. Jo, S. H., Ha, K. S, Moon, K. S., Kim, J. G., Oh, C. G., Kim, Y. C., Apostolidis, E. and Kwon, Y. I. 2013. Molecular weight dependent glucose lowering effect of low molecular weight chitosan oligosaccharide (GO2KA1) on postprandial blood glucose level in SD rats model. Int. J. Mol. Sci. 14, 14214-14224. https://doi.org/10.3390/ijms140714214
  13. Joshi S. R., Ramachandran, A., Chadha, M., Chattergee, S., Rathod, R. and Kalra, S. 2014. Acarbose plus metformin fixed-dose combination in the management of type 2 diabetes. Expert Opin. Pharmacother. 15, 1611-1620. https://doi.org/10.1517/14656566.2014.932771
  14. Kahn, S. E. 2003. The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of type 2 diabetes. Diabetologia 46, 3-19. https://doi.org/10.1007/s00125-002-1009-0
  15. Kim, J. G., Ha, K. S., Kim, S. C., Kim, Y. C., Apostolidis, E. and Kwon, Y. I. 2014. Effect of long-term supplementation of low molecular weight chitosan oligosaccharide (GO2KA1) on fasting blood glucose and HbA1c in db/db mice model and elucidation of mechanism of action. BMC Complement. Altern. Med. 14, 272. https://doi.org/10.1186/1472-6882-14-272
  16. Klip, A., Ramlal, T., Young, D. A. and Holloszy, J. O. 1987. Insulin-induced translocation of glucose transporters in rat hindlimb muscles. FEBS Lett. 224, 224-230. https://doi.org/10.1016/0014-5793(87)80452-0
  17. Lebovitz, H. E., Dole, J. F., Patwardhan, R., Rappaport, E. B. and Freed, M. I. 2001. Rosiglitazone monotherapy is effective in patients with type 2 diabetes. Rosiglitazone Clinical Trials Study Group. J. Clin. Endocrinol. Metab. 86, 280-288. https://doi.org/10.1210/jcem.86.1.7157
  18. Lee, S. H., Min, K. H., Han, J. S., Lee, D. H., Park, D. B., Jung, W. K., Park, P. J., Jeon, B. T., Kim, S. K. and Jeon, Y. J. 2012. Effects of brown alga, Ecklonia cava on glucose and lipid metabolism in C57BL/KsJ-db/db mice, a model of type 2 diabetes mellitus. Food Chem. Toxicol. 50, 575-582. https://doi.org/10.1016/j.fct.2011.12.032
  19. Lind, M., Oden, A., Fahlen, M. and Eliasson, B. 2009. The true value of HbA1c as a predictor of diabetic complications:Simulations of HbA1c variables. PLoS One 4, e4412. https://doi.org/10.1371/journal.pone.0004412
  20. Liu, S. H., Chang, Y. H and Chiang, M. T. 2010. Chitosan reduces gluconeogenesis and increase glucose uptake in skeletal muscle in Streptozotocin-induced diabetic rats. J. Agric. Food Chem. 12, 5795-5800.
  21. Mori, N., Kurata, M., Yamazaki, H., Hosokawa, H., Nadamoto, T., Inoue, K. and Fushiki, T. 2013. Intragastric administration of allyl isothiocyanate reduces hyperglycemia in intraperitoneal glucose tolerance test (IPGTT) by enhancing blood glucose consumption in mice. J. Nutr. Sci. Vitaminol. 59, 56-63. https://doi.org/10.3177/jnsv.59.56
  22. Navale, A. M. and Paranjape, A. N. 2016. Glucose transporters:physiological and pathological roles. Biophys. Rev. 8, 5-9. https://doi.org/10.1007/s12551-016-0237-3
  23. Park, S. Y., Kim, M. H., Ahn, J. H., Lee, S. J., Lee, J. H., Eum, W. S., Choi, S. Y. and Kwon, H. Y. 2014. The stimulatory effect of essential fatty acids on glucose uptake involves both Akt and AMPK activation in C2C12 skeletal muscle cells. Kor. J. Physiol. Pharmacol. 18, 255-261. https://doi.org/10.4196/kjpp.2014.18.3.255
  24. Praythiesh Bruce, M. S. and Vasantha Mallika, M. C. 2019. Prevalence of complications of diabetes among patients with diabetes mellitus attending a tertiary care centre in Tamil Nadu. Int. J. Community Med. Public Health 6, 1452-1456. https://doi.org/10.18203/2394-6040.ijcmph20191049
  25. Raji, A., Seely, E. W., Bekin, S. A., Williams, G. and Simonson, D. 2003. Rosiglitazone improves insulin sensitivity and lowers blood pressure in hypertensive patients. Diabetes Care 26, 172-178. https://doi.org/10.2337/diacare.26.1.172
  26. Ravzanaadii, N., Kim, S. H., Choi, W. H., Hong, S. J. and Kim, N. J. 2012. Nutritional Value of Mealworm, Tenebrio molitor as Food Source. Int. J. Indust. Entomol. 25, 93-38. https://doi.org/10.7852/ijie.2012.25.1.093
  27. Rumpold, B. A. and Schluter, O. K. 2013. Nutritional composition and safety aspects of edible insects. Mol. Nutr. Food Res. 57, 802-823. https://doi.org/10.1002/mnfr.201200735
  28. Saltiel, A. R. and Kahn, C. R. 2001. Insulin signaling and the regulation of glucose and lipid metabolism. Nature 414, 799-806. https://doi.org/10.1038/414799a
  29. Seo, M., Goo, T. W., Chung, M. Y., Baek, M., Hwang, J. S., Kim, M. A. and Yun, E. Y. 2017. Tenebrio molitor larvae inhibit adipogenesis through AMPK and MAPKs signaling in 3T3-L1 adipocytes and obesity in high-fat diet-induced obese mice. Int. J. Mol. Sci. 18, 158. https://doi.org/10.3390/ijms18010158
  30. Song, Y. S., Kim, M. W., Moon, C., Seo, D. J., Han, Y. S., Jo, Y. H., Noh, M. Y., Noh, M. Y., Park, Y. K., Kim, S. A., Kim, Y. W. and Jung, W. J. 2018. Extraction of chitin and chitosan from larval exuvium and whole body of edible mealworm, Tenebrio molitor. Entomol. Res. 48. 227-233. https://doi.org/10.1111/1748-5967.12304
  31. Stuart A. R., Gulve E. A. and Wang M. 2004. Chemistry and biochemistry of type 2 diabetes. Chem. Rev. 104, 1255-1282. https://doi.org/10.1021/cr0204653
  32. Suh, H. J., Kim, S. R., Lee, K. S., Park, S. and Kang, S. C. 2010. Antioxidant activity of various solvent extracts from Allomyrina dichotoma (Arthropoda: Insecta) larvae. J. Photochem. Photobiol. B-Biol. 99, 67-73. https://doi.org/10.1016/j.jphotobiol.2010.02.005
  33. Takikawa, M., Inoue, S., Horio, F. and Tsuda, T. 2010. Dietary anthocyanin-rich bilberry extract ameliorates hyperglycemia and insulin sensitivity via activation of AMP-activated protein kinase in diabetic mice. J. Nutr. 140, 527-533. https://doi.org/10.3945/jn.109.118216
  34. Velcheti, V. and Govindan, R. 2006. Insulin-like growth factor and lung cancer. J. Thorac. Oncol. 1, 607-610. https://doi.org/10.1097/01243894-200609000-00002
  35. Won, R. 2017. Insect-based chitin research and its potential application to insect industry in Korea. J. Chitin Chitosan. 22, 215-220. https://doi.org/10.17642/jcc.22.4.1