DOI QR코드

DOI QR Code

Photosynthesis, Growth and Yield Characteristics of Peucedanum japonicum T. Grown under Aquaponics in a Plant Factory

식물공장형 아쿠아포닉스에서 산채 갯기름의 광합성, 생육 및 수량 특성

  • Lee, Hyoun-Jin (Department of Agriculture and Industries, Kangwon National University Graduate School) ;
  • Choi, Ki-Young (Division of Future Agriculture Convergence, Kangwon National University) ;
  • Chiang, Mae-Hee (Department Horticulture, Biotechnology & Landscape Architecture, Seoul Women's University) ;
  • Choi, Eun-Young (Department of Agricultural Science, Korea National Open University)
  • 이현진 (강원대학교 농산업학과) ;
  • 최기영 (강원대학교 미래농업융합학부) ;
  • 장매희 (서울여자대학교 원예생명조경학과) ;
  • 최은영 (한국방송통신대학교 농학과)
  • Received : 2022.01.19
  • Accepted : 2022.01.27
  • Published : 2022.01.31

Abstract

This study aimed to determine the photosynthesis and growth characteristics of Peucedanum japonicum T. grown under aquaponics in a plant factory (AP) by comparing those grown under hydroponic cultivation system (HP). The AP system raised 30 fishes at a density of 10.6 kg·m-3 in a 367.5 L tank, and at HP, nutrient solution was controlled with EC 1.3 dS·m-1 and pH 6.5. The pH level ranged from 4.0 to 7.1 for the AP system and 4.0 to 7.4 for the HP system. The pH level in the AP began to decrease with an increase in nitrate nitrogen (NO3-N) and lasted bellower than pH 5.5 for 15-67 DAT. It was found that ammonium nitrogen (NH4-N) continued to increase even under low pH conditions. EC was maintained at 1.3 to 1.5 dS·m-1 in both systems. The concentration of major mineral elements in the fish tank was higher than that of the hydroponics, except for K and Mg. There was no significant difference in the photosynthesis characteristics, but the PIABS parameters were 30.4% lower in the AP compared to the HP at the 34DAT and 12.0% lower at the 74DAT. There was no significant difference in the growth characteristics, but the petiole length was 56% longer in the leaf grown under the AP system. While there was no significant difference in the fresh and dry weights of leaf and root, the leaf area ratio was 36.43% higher in the AP system. All the integrated results suggest that aquaponics is a highly-sustainable farming to safely produce food by recycling agricultural by-products, and to produce Peucedanum japonicum as much as hydroponics under a proper fish density and pH level.

본 연구는 식물공장형 아쿠아포닉 시스템(AP)에서 갯기름을 재배하여 수경재배 시스템(HP)에서 재배된 갯기름과 광합성 및 생육 특성을 비교하였다. AP 재배구는 367.5L의 사육조에 비단잉어 30마리로 10.6kg·m-3 밀도로 사육하였으며 HP 재배구는 배양액을 EC 1.3dS·m-1, pH 6.5로 조성하여 같은 재식 간격으로 갯기름을 정식하였다. 전 재배기간 동안 pH는 AP의 경우 7.1-4.0, HP는 7.4-4.0 수준을 보였다. AP 처리구의 pH는 NO3-N의 증가에 따라 감소하기 시작하여 pH 5.5 이하는 15-67 DAT 기간동안 지속되었다. pH가 낮은 조건에서도 암모니아태 질소(NH4-N)는 지속적 증가를 보였다. EC는 두 재배구에서 1.3-1.5dS·m-1로 유지되었다. 수조액의 다량원소 농도는 K와 Mg을 제외하고 수경재배 양액 농도보다 높았다. 광합성 특성은 AP와 HP 처리간 유의차가 없었고 형광매개변수는 Fv/Fm, ABS/RC, TRo/RC, ETo/RC, DIo/RC는 처리간 차이가 없었으나 광계 II 광화학지수인 PIABS가 AP 재배구에서 HP에 비해 34DAT에는 30.4%, 74DAT에는 12.0% 낮았다. 정식 후 20일 간격으로 생육 특성을 측정한 결과 두 처리간 초장, 엽장, 엽폭, 엽수 SPAD는 유의적으로 차이가 없었으나 엽병 길이가 AP 재배구에서 HP에 비해 56% 길었고 지상부 및 지하부 상대생장율, 건물중이 유의차가 없었다. 다만, 엽면적율만 AP 재배구에서 HP에 비해 36.43% 높았다. 연구결과를 종합하여 볼 때, 적정 물고기 재배밀도와 pH 수준에서 갯기름 생육과 수량은 아쿠아포닉스와 수경재배 방식 간에 차이가 없는 것으로 보이고, 아쿠아포닉스는 농업 부산물의 자원순환으로 안전한 먹거리를 생산할 수 있는 지속가능한 농업기술로 판단된다.

Keywords

Acknowledgement

이 논문은 2020년도 한국방송통신대학교 학술연구비 지원을 받아 작성된 것임.

References

  1. Ashraf M.R., Z.U. Noor Zafar, and M. Mujahid 1994, Growth and ion distribution in salt stressed Melilotus indica (L.) All. and Medicago sativa L.. Flora 189:207-213. doi:10.1016/S0367-2530(17)30595-9
  2. Bjorkman O., and B. Demmig 1987, Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170:489-504. doi:10.1007/BF00402983
  3. Bosma R.H., L. Lacambra, Y. Landstra, C. Perini, J. Poulie, M.J. Schwaner, and Y. Yin 2017, The financial feasibility of producing fish and vegetables through aquaponics. Aquac Eng 78:146-154. doi:10.1016/j.aquaeng.2017.07.002
  4. Byun S.Y., and H.D. Seok 2019, An analysis of consumer preference and demand for wild vegetables: Through a consumer preference survey and social big data analysis. J Korean Soc For Sci 108:116-126. doi:10.14578/jkfs.2019.108.1.116
  5. Filep R.F., S. Diaconescu, M.Costache, M.S. Bedivan, L. Badulescu, and C.G. Nicolaea 2016, Pilot aquaponic growing system of carp (Cyprinus Carpio) and basil (Ocimum Basilicum). Agri Agricultural Sci Pro 10:255-260. doi:10.1016/j.aaspro.2016.09.062
  6. Francis C., G. Lieblein, S. Gliessman, T.A. Breland, N. Creamer, R. Harwood, L. Salomonsson, J. Helenius, D. Rickerl, R. Salvador, M. Wiedenhoeft, S. Simmons, P. Allen, M. Altieri, C. Flora, and R. Poincelot 2003, Agroecology: The Ecology of Food Systems. J Sustain Agric 22:99-118. doi:10.1300/J064v22n03_10
  7. Graamans L., E. Baeza, A. van den Dobbelsteen, I. Tsafaras, and C. Stanghellini 2018, Plant factories versus greenhouses: comparison of resource use efficiency. Agric Syst 160:31-43. doi:10.1016/j.agsy.2017.11.003
  8. Heo J.W., D.E. Kim, K.S. Han, and S.J. Kim 2013, Effect of light-quality control on growth of Ledebouriella seseloides grown in plant factory of an artificial light type. Korean J Environ Agric 32:193-200. doi:10.5338/KJEA.2013.32.3.193.
  9. Hochheimer J.N., and F.W. Wheton 1998, Biological filters: Trickling and RBC Design. In: Libey G.S. and M.B. Timmons. Proceedings of the Second International Conference on Recirculating Aquaculture Roanoke Virginia pp 291-318. http://web.deu.edu.tr/atiksu/ana52/trirbcdes.pdf
  10. Hoffmann W.A., and H. Pooter 2002, Avoiding bias calculations of relative growth rate. Ann Bot 80:37-42. doi:10.1093/aob/mcf140.
  11. Inoue S.I., K. Takahashi, H. Okumura-Noda, and T. Kinoshita 2016, Auxin influx carrier AUX1 confers acid resistance for arabidopsis root elongation through the regulation of plasma membrane H+-ATPase. Plant Cell Physiol 57:2194-2201. doi:10.1093/pcp/pcw136
  12. Kang H.K., S.M. Kim, and H.S. Song 2017, Optimum cultivation conditions from habitat status of Glehnia littoralis in Korean Midwest region. Korean J Medicinal Crop Sci 25:102-107. doi:10.7783/KJMCS.2017.25.2.102
  13. Kim J.C., J.H. Kim, S.D. Park, and B.S Choi 2001, Effect of vinyl mulching on growth and yield of Peucedanum Japonicum Thunb. Korean J Medicinal Crop Sci 9:284-289. http://db.koreascholar.com/article.aspx?code=254789
  14. Kim S.J., Y.W. Chin, K.D. Yoon, M.Y. Ryu, M.H. Yang, J.H Lee, and J.W. Kim 2008, Chemical constituents of Saposhnikovia divaricata. Kor J Pharmacogn 39:357-364. uci:G704-000753.2008.39.4.010
  15. Kim Y.O., and S.M. Lee 2015, Influence of spirulina level in diet on skin color of red- and white-colored fancy carp Cyprinus carpio var. koi. J Kor Soc Fish Mar Edu 27:414-421. doi:10.13000/JFMSE.2015.27.2.414
  16. Korean Statistical Information Service (Kosis) 2021, Wild vegetable cultivation area at 2021. Accessed 10 January 2022.
  17. Lee D.H. 2021, Comparative study on growth of leafy vegetables grown in a hybrid BFT-aquaponics using yellow koi fish, Cyprinus carpio and hydroponics. J Kor Soc Fish Mar Edu 33:1027-1037. doi:10.13000/JFMSE.2021.10.33.5.1027
  18. Lee H.J., K.Y. Choi, and E.Y. Choi 2020, Determination of mineral nutrient concentrations in fish growing water and lettuce leaf for hydroball aquaponics. Protected Hort Plant Fac 29:293-305. doi:10.12791/KSBEC.2020.29.3.293
  19. Lee Y.B., K.W. Park, S.T. Park, J.H. Bae, H.J. You, H.Y. Jo, K.Y. Choi, and Y.Y. Choi 2015, In YB Lee. ed. Practical Hydroponics: Nutrient composition for leaf vesgetable Ed 1. Jinsol, Koera, pp 86.
  20. Liang J.Y., and Y.H. Chien 2015, Effects of photosynthetic photon flux density and photoperiod on water quality and crop production in a loach (Misgurnus anguillicandatus) enest fern (Asplenium nidus) raft aquaponics system. Int Biodeter Biodegr 102:214-222. doi:10.1016/j.ibiod.2015.02.018
  21. Masser M.P., J. Rakocy, and T.M. Losordo 1992, Recirculating aquaculture tank production systems. SARC 452:1-12. https://www.researchgate.net/publication/239549714_Recirculating_Aquaculture_Tank_Production_Systems_-_Management_Of_Recirculating_Systems
  22. Park N.K., S.H. Lee, S.H. Chung, S.D. Park, B.S. Choi, and W.S. Lee 1995, Effects of fertilization and mulching on yield and quality of Peucedanum Japonicum Thunberg. Korean J Medicinal Crop Sci 3:16-20.
  23. Patane C. 2011, Leaf area index, leaf transpiration and stomatal conductance as affected by soil water deficit and VPD in processing tomato in semi-arid Mediterranean climate. J Agron Crop Sci 197:165-176. doi:10.1111/j.1439-037X.2010.00454.x
  24. Pineda-Pineda J., I. Miranda-Velazquez, J.E. RodriguezPerez, J.A. Ramirez-Arias, E.A. Perez-Gomez, I.N. GarciaAntonio, and J.J. Morales-Parada 2017, Nutrimental balance in aquaponic lettuce production. Acta Hortic 1170:1093-1100. doi:10.17660/ActaHortic.2017.1170.141
  25. Purwono A.R., M. Hibbaan, and M.A. Budihardjo 2017, Ammonia-nitrogen (NH3-N) and ammonium nitrogen (NH4-N) equilibrium on the process of removing nitrogen by using tubular plastic media. J Mater Environ Sci 8:4915-4922. Retrieved from https://www.jmaterenvironsci.com/Document/vol8/vol8_NS/522-JMES-2876-Purwono.pdf. on October 10, 2018.
  26. Rakocy J.E., T.M. Losordo, and M.P. Masser 2006, Recirculating aquaculture tank production systems: integrating fish and plant culture. Southern Regional Aquaculture Center: Stoneville, MS, USA. pp 1-16. https://shareok.org/bitstream/handle/11244/319795/oksd_srac_454_2016-07.pdf?sequence=1
  27. Schreier H.J., N. Mirzoyan, and K. Saito 2010, Microbial diversity of biological filters in recirculating aquaculture systems. Curr Opin Biotech 21:318-325. doi:10.1016/j.copbio.2010.03.011
  28. Song K.S., K.S. Jeon, K.S. Choi, C.H. Kim, Y.B. Park, and J.J. Kim 2016, Characteristics of growth and photosyntesis of Peucedani Japonicum by shading and leaf mold treatment in forest farming. J Korean For Soc 105:78-85. doi:10.14578/jkfs.2016.105.1.78
  29. Stanghellini C., B.V. Ooster and E. Heuvelink 2019, Greenhouse horticulture: Technology for optimal crop production. Wageningen Academic Publishers, pp 34. doi:10.3920/978-90-8686-879-7
  30. Tyson R.V., E.H. Simonne, D.D. Treadwell, M. Davis, and J.M. White 2008, Effect of water ph on yield and nutritional status of greenhouse cucumber grown in recirculating hydroponics. J Plant Nutr 31:2018-2030. doi:10.1080/01904160802405412
  31. Van Woensel L., G. Archer, L. Panades-Estruch, and D. Vrscaj 2015, Ten technologies which could change our lives: Potential impacts and policy implications. European Parliament Publications Office. pp 15.
  32. Wongkiew S., Z. Hu, K. Chandran, J.W. Lee, and S.K. Khanal 2017, Nitrogen transformations in aquaponic systems: A review. Aquac Eng 76:9-19. doi:10.1016/j.aquaeng.2017.01.004
  33. Yang T., and H.J. Kim 2020, Comparisons of nitrogen and phosphorus mass balance for tomato, basil, and lettuce-based aquaponic and hydroponic systems. J Clean Prod 274:122619. doi:10.1016/j.jclepro.2020.122619
  34. Zhang C.P., P. Meng, J.Z. Li, and X.C. Wan 2014, Interactive effects of soil acidification and phosphorus deficiency on photosynthetic characteristics and growth in Juglans regia seedlings. Chin J Plant Ecol 38:1345-1355. doi:10.3724/SP.J.1258.2014.00129
  35. Zou Y., Z. Hu, J. Zhang, H. Xie, C. Guimbaud, and Y. Fang 2016, Effects of pH on nitrogen transformations in media-based aquaponics. Bioresour Technol 210:81-87. doi:10.1016/j.biortech.2015.12.079