• Title/Summary/Keyword: PENDULUM

Search Result 943, Processing Time 0.025 seconds

Fuzzy Control and Implementation of a 3-Dimensional Inverted Pendulum System (3차원 도립진자 시스템의 구현 및 퍼지 제어)

  • Shin, Ho-Sun;Chu, Jun-Uk;Lee, Seung-Ha;Lee, Yun-Jung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.2
    • /
    • pp.137-147
    • /
    • 2003
  • The fuzzy control and implementation of a new three-dimensional(3-D) inverted pendulum system are addressed. In comparison with conventional 1-D and 2-D systems, the 3-D inverted pendulum system is a proper benchmark system to simulate human's control action which includes the up and down motion to stabilize an inverted pendulum. To investigate the characteristics of the 3-D inverted pendulum system and to design of a fuzzy controller, we derive dynamic equations of the mechanism including a 3-axis cartesian robot and an inverted pendulum. We propose a design method of a fuzzy controller of the yaw and pitch angles of an inverted pendulum. In the design, the redundant degree-of-freedom(DOF) of the robot and the constrained workspace are taken into account. The performance of the proposed system is proved by experimental results using a developed PC-based Multi-Motion Control(MMC) board.

MAXILLARY MOLAR DISTALIZATION WITH A PENDULUM APPLIANCE (Pendulum 장치를 이용한 상악 대구치의 원심이동 증례)

  • Lee, H.J.;Kim, Y.J.;Kim, J.W.;Jang, K.T.;Lee, S.H.;Kim, C.C.;Hahn, S.H.
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.35 no.3
    • /
    • pp.523-531
    • /
    • 2008
  • Maxillary molar distalization is a treatment approach for patients with Class II malocclusions who do not require extractions and mesial movements of mandibular molars. The pendulum appliance is effective for distalization of the maxillary molars and independent of patient cooperation. This appliance can stabilize the maxillary premolars and use the palatal rugae area as an additional anchorage. However, caution is needed to control collateral effects, including increase of lower facial height, incisor protrusion and damage to the rugae area. This article reports the cases in which maxillary molar distalization achieved by pendulum appliance resolves the space problems and corrects the molar relationships.

  • PDF

Curing Behaviors and Viscoelastic of UPE Resins with Different Glycol Molar Ratios (글리콜 몰비가 다른 불포화 폴리에스테르 수지의 경화거동 및 점탄성)

  • Lee, Sang-Hyo;Park, Yung-Hoon;An, Seung-Kook;Lee, Jang-Oo
    • Polymer(Korea)
    • /
    • v.25 no.1
    • /
    • pp.15-24
    • /
    • 2001
  • In this study, the effects of different glycol molar ratios of unsaturated polyester(UPE) resins on the curing behaviors were investigated. The cross linking process was checked or monitored by differential scanning calorimetry(DSC) and by viscoelastic properties of rigid-body pendulum model. The knife-edge from which the pendulum is suspended, is immersed in a reaction mixture, and the change of the viscoelastic behavior brings on those of the period(T) and logarithmic decrement(${\Delta}$) of the damped free oscillations of the pendulum. The values of T and ${\Delta}$ obtained are related to the dynamic modulus(E') and modulus loss(E'). The information on the viscoelastic behavior of unsaturated polyester(UPE) resins during the curing process are shown to illustrate the usefulness of the techniques. As the content of NPG in a propylene glycol(PG)/NPG glycol mixture increased, both the cycle time during cure and the change of damping during cure of UPE resin decreased.

  • PDF

Design of Optimized Fuzzy PD Cascade Controller Based on Parallel Genetic Algorithms (병렬유전자 알고리즘 기반 최적 Fuzzy PD Cascade 제어기의 설계)

  • Jung, Seung-Hyun;Choi, Jeoung-Nae;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.3
    • /
    • pp.329-336
    • /
    • 2009
  • In this paper, we propose the design of an optimized fuzzy cascade controller for rotary inverted pendulum system by means of Hierarchical Fair Competition-based Genetic Algorithms (HFCGA) which is a kind of parallel genetic algorithms. The rotary inverted pendulum system is the system for controlling the inclination of pendulum axis through the adjustment of rotating arm. The control objective of the system is to control the position of rotating arm and to make the pendulum maintain the unstable equilibrium point of vertical position. To control rotary inverted pendulum system, we designs the fuzzy cascade controller scheme consisted of two fuzzy controllers and optimizes the parameters of the designed controller by means of HFCGA. A comparative analysis between the simulation and the practical experiment demonstrates that the proposed HFCGA based fuzzy cascade controller leads to superb performance in comparison with the conventional LQR controller as well as HFCGA based PD cascade controller.

Design of the fuzzy sliding mode controller with double pole inverted pendulum (두개의 pole을 갖는 도립 진자의 퍼지 슬라이딩 모드 제어기 설계)

  • 강항균;한종길;함운철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.188-191
    • /
    • 1996
  • In this paper, we derive dynamic equation of double pole inverted pendulum using Lagrangian equation, and design the fuzzy sliding mode controller. We demonstrate that the designed controller regulates double pole simultaneously regardless of cart position by computer simulation.

  • PDF

Composite Control for Inverted Pendulum System

  • Kwon, Yo-Han;Kim, Beom-Soo;Lee, Sang-Yup;Lim, Myo-Taeg
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.1
    • /
    • pp.84-91
    • /
    • 2002
  • A new composite control method for a carriage balancing single inverted pendulum system is proposed and applied to swing up the pendulum and to stabilize it under the state constraint. The target inverted pendulum system has an extremely limited length of the cart(below 16cm). The proposed swing-up controller comprises a sliding mode control algorithm and an optimal control algorithm based on two regions: the region near the inverted unstable equilibrium position and the rest of the state space including the downward stable equilibrium position. The sliding mode controller uses a switching control action to converge along the specified path(hyperplane) derived from energy equation from a state around the path to desired state(standing position). An optimal control method is also used to guarantee the stability at unstable equilibrium position. Compared with the reported controllers, it is simpler and easier to implement. Experimental results are given to show the effectiveness of this controller.

Study on the Application of Tuned Pendulum Slab Damper system (TPSD) to Building structure (진자슬래브에 의한 진동제어시스템의 적용성 평가)

  • Kim, Yang-Jung;Seo, Gun-Bae
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.181-184
    • /
    • 2012
  • The Tuned Pendulum Slab Damper(TPSD)system is mainly composed of suspended pendulum slab which was hanging with cable wire from the top floor of building without any extra loads structurally, and can be helpful to reduce vibration with effect of tuned mass damper function by the principle of pendulum movement. The experiment was performed with miniatures of the 30stories of steel structure building by the forced vibration test using shaking table, and the result was reduced about 42% of vibration. The purpose of this study was to make analysis of application of the TPSD system to new building and exist building against strong wind or seismic wave. The result of this study was that the TPSD system shall be satisfactory in field of execution, process control, safety and economical efficiency with saving up to 70% of construction cost.

  • PDF

Calibration of Inertial Measurement Units Using Pendulum Motion

  • Choi, Kee-Young;Jang, Se-Ah;Kim, Yong-Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.3
    • /
    • pp.234-239
    • /
    • 2010
  • The utilization of micro-electro-mechanical system (MEMS) gyros and accelerometers in low-level inertial measurement unit (IMU) influences cost effectiveness in a positive way under the condition that device error characteristics are fully calibrated. The conventional calibration process utilizes a rate table; however, this paper proposes a new method for achieving reference calibration data from the natural motion of pendulum to which the IMU undergoing calibration is attached. This concept was validated with experimental data. The pendulum angle measurements correlate extremely well with the solutions acquired from the pendulum equation of motion. The calibration data were computed using the regression method. The whole process was validated by comparing the measurement from the 6 sensor components with the measurements reconstructed using the identified calibration data.

The $H_2/ H_\infty$ control of inverted pendulum system using linear fractional representation (도립진자 시스템에 선형 분수 표현법을 이용한 $H_2/ H_\infty$ 제어)

  • 곽칠성;최규열
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.4
    • /
    • pp.875-885
    • /
    • 1999
  • This paper presents an application of LMI-based techniques to the mixed $H_2/ H_\infty$ control of an inverted pendulum. The linear model of the inverted pendulum represented by an LFR(Linear Fractional Representation) model of uncertainties is derived. Considered uncertainties are three nonlinear components and a parameter uncertainty Augmenting the LFR model by adding weighting functions, we get a generalized plant, for which we design a mixed $H_2/ H_\infty$ controller using the LMI technique. To evaluate control performances and robust stability of the mixed $H_2/ H_\infty$ controller designed, we compare it with the $ H_\infty$controller through the simulation and experiment. The mixed $H_2/ H_\infty$ controller shows the better control performances and robust stability than the $H_\infty$controller in the sense of pendulum angle.

  • PDF

A Implementation of an Inverted Pendulum with Centrifugal Force using the NonLinear Sliding Mode Contrl (비선형 슬라이드 모드 제어를 적용한 원심력을 갖는 도립진자 제어기의 구현)

  • 황윤호;원태현;이만형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.606-609
    • /
    • 1995
  • To stabilize a satellite, a spin stabilization method is used for attitude control. The spin stabilization uses the centrifugal force of a pendulum damper which is tilted long boom, to stabilize the unstable satellite. In this paper, an inverted pendulum system is implemented which is similar to the spin stabilization method. Study on the velocity of the rotation axis and the inverted pendulum's angle stability is shown. We designed a controller using a 32bit TMS320C31 DSP for the CPU and also performances by PLD control and Sliding Mode Control is compared.

  • PDF