DOI QR코드

DOI QR Code

Design of Optimized Fuzzy PD Cascade Controller Based on Parallel Genetic Algorithms

병렬유전자 알고리즘 기반 최적 Fuzzy PD Cascade 제어기의 설계

  • Received : 2008.11.19
  • Accepted : 2009.05.14
  • Published : 2009.06.25

Abstract

In this paper, we propose the design of an optimized fuzzy cascade controller for rotary inverted pendulum system by means of Hierarchical Fair Competition-based Genetic Algorithms (HFCGA) which is a kind of parallel genetic algorithms. The rotary inverted pendulum system is the system for controlling the inclination of pendulum axis through the adjustment of rotating arm. The control objective of the system is to control the position of rotating arm and to make the pendulum maintain the unstable equilibrium point of vertical position. To control rotary inverted pendulum system, we designs the fuzzy cascade controller scheme consisted of two fuzzy controllers and optimizes the parameters of the designed controller by means of HFCGA. A comparative analysis between the simulation and the practical experiment demonstrates that the proposed HFCGA based fuzzy cascade controller leads to superb performance in comparison with the conventional LQR controller as well as HFCGA based PD cascade controller.

본 논문은 회전형 역 진자 시스템(Rotary Inverted Pendulum System : RIPS)의 제어를 위한 Fuzzy cascade 제어구조를 제안하고 병렬유전자 알고리즘의 하나인 계층적 공정 경쟁 기반 유전자 알고리즘(Hierarchical Fair Competition-based Genetic Algorithms : HFCGA)을 이용한 최적화 방법을 제시한다. 회전형 역 진자 시스템은 Rotating arm의 회전을 통해 Pendulum의 각도를 제어하는 시스템으로써 제어 목적은 Rotating arm을 원하는 위치에 오게 하고 진자를 수직 위치의 불안정 평형 점에 위치하도록 하는 것이다. 본 논문에서는 회전형 역 진자 시스템의 제어를 위해 두개의 Fuzzy 제어기로 구성된 Fuzzy cascade 제어 구조를 설계하고, HFCGA를 이용하여 설계된 제어기의 파라미터를 최적화한다. 시뮬레이션 및 실험에서 SGA와 HFCGA의 성능비교를 통해 HFCGA의 우수성을 보이고, LQR 및 PD cascade 제어기와 제안된 Fuzzy cascade 제어기의 성능 비교를 통하여 제안된 방법의 우수성을 보인다.

Keywords

References

  1. 오성권, 'C 프로그래밍에 의한 퍼지 모델 및 제어시스템', 내하출판사, 2002
  2. C. C. Lee, 'Fuzzy Logic in Control Systems:Fuzzy Logic Controller - part I and part II,' IEEE Trans. on Syst., Man Cybern., vol. 20, pp. 404-435, 1990 https://doi.org/10.1109/21.52551
  3. L. Wang, 'Stable and Optimal Fuzzy Control of Linear Systems,' IEEE Trans. on Fuzzy Syst. vol. 6, no.1, pp.137-143, 1998 https://doi.org/10.1109/91.660813
  4. S.-K. Oh, W. Pedrycz, S.-B. Rho and T.-C. Ahn, 'Parameter estimation of fuzzy controller and Its application to inverted pendulum' Engineering Applications of Artificial Intelligence, vol. 17, Issue 1, February 2004, Pages 37-60 https://doi.org/10.1016/j.engappai.2003.12.003
  5. K. Passino i S. Yurkovich, 'Fuzzy Control', Addison-Wesley Longman, Ohio 1998
  6. Razani K. Mudi, Nikhil R. pal 'A Robust Self-Tuning Scheme for PI and PD Type Fuzzy Controllers' IEEE Transactions on Fuzzy systems Vol.7, No.1, February 1999
  7. Zhen-yu Zhao, Massayoshi Tomizuka, Satoru Isaka. 'Fuzzy Gain Scheduling of PID Controllers' IEEE Transactions on systems, man and Cybernetic. Vol 23, No.5. Sep./Oct. 1993
  8. Li Zheng. ' A Practical Guide to Tune of PI Like Fuzzy Controllers.' IEEE. 1992
  9. Z. Michalewicz, 'Genetic Algorithms + Data Structures = Evolution Programs',Springer-Verlag, Berlin Heidelberg, 1996
  10. D. Jong, K. A., 'Are Genetic Algorithms Function Optimizers? ', North-Holland,Amsterdam
  11. 진강규, '유전알고리즘과 그 응용', 교우출판사, 2002
  12. Lin, S.C., Goodman, E., Punch, W.' Coarse-Grain Parallel Genetic Algorithms: Categorization and New Approach,' IEEE Conf. on Parallel and Distrib. Processing. Nov. (1994)
  13. R. Lohmann, ' Application of Evolution Strategy in Parallel Populations', Lecture Notes in Computer Science, Springer-Verlag, Vol. 496, pp198-208, 1991 https://doi.org/10.1007/BFb0029753
  14. J. Hu, E. Goodman, K. Seo, Z, Fan, R. Rosenberg, ' The Hierarchical Fair Competition (HFC) Framework for Continuing Evolutionary Algorithms,'. Evolutionary Computation, The MIT Press, Vol. 13, Issue 2, pp 241-277, 2005 https://doi.org/10.1162/1063656054088530
  15. R. Ortega, M. W. Spong, F. Gomez-Estern, and G. Blankenstein, 'Stabilization of a class of under actuated mechanical systems via interconnection and damping assignment,' IEEE Transactions on Automatic Control , vol. 47, no. 8, pp. 1218-1233, Aug 2002 https://doi.org/10.1109/TAC.2002.800770
  16. F. Grasser, A. D. Arrigo, S. Colombi, and A. C. Rufer, 'JOE: a mobile, inverted pendulum,' IEEE Transactions on Industrial Electronics, vol. 49, no. 1, pp. 107-114, Feb 2002 https://doi.org/10.1109/41.982254
  17. D. YU, G. LI, S. WANG AND H. HU, ' A Fuzzy Cascade Control for An Inverted Pendulum' International Journal of Information and Systems Sciences, vol. 3, no. 4, pp. 663-675, Jan 2007