• Title/Summary/Keyword: PEM electrolysis

Search Result 36, Processing Time 0.019 seconds

Recent Progress on Proton Exchange Membrane Based Water Electrolysis (수소이온 교환막 기반 수전해의 최근 연구 동향)

  • Yang, Seungmin;Rajkumar, Patel
    • Membrane Journal
    • /
    • v.32 no.5
    • /
    • pp.275-282
    • /
    • 2022
  • In contemporary days, hydrogen-based energies including batteries are renowned to be effective. And its effectiveness comes from the fact that it possesses high efficiency as an energy carrier. Eco-friendly and high purity of hydrogens comes out from water electrolysis. And among different types of electrolysis, proton exchange membrane (PEM) water electrolysis is considered the most renewable, cheap, and eco-friendly. It produces oxygen and hydrogens which are feasible in using as energies. Since it has such a number of benefits, increased research is going on in PEM electrolysis. Nafion is widely used as PEM, but high cost and various other disadvantages leads to the exploration of alternative materials. This review is broadly classified into Nafion and non Nafion based PEM for water electrolysis.

Understanding Thermodynamics of Operating Voltage and Efficiency in PEM Water Electrolysis System for Carbon Neutrality and Green Hydrogen Energy Transition (탄소중립과 그린 수소에너지 전환을 위한 PEM 수전해 시스템에서 작동 전압 및 효율의 열역학적 이해)

  • HyungKuk Ju;Sungyool Bong;Seungyoung Park;Chang Hyun Lee
    • Journal of the Korean Electrochemical Society
    • /
    • v.26 no.4
    • /
    • pp.56-63
    • /
    • 2023
  • The development of renewable energy technologies, such as solar, wave, and wind power, has led to the diversification of water electrolysis technologies, which can be easily coupled with renewable energy sources in terms of economics and scale. Water electrolysis technologies can be classified into three types based on operating temperature: low-temperature (<100 ℃), medium-temperature (300-700 ℃), and high-temperature (>700 ℃). It can also be classified by the type of electrolyte membrane used in the system. However, the concepts of thermodynamic and thermo-neutral voltages calculations and are very important factors in the evaluation of energy consumption and efficiency of water electrolysis technologies, are often confused. This review aims to contribute to a better understanding of the calculation of operating voltage and efficiency of PEM water electrolysis technologies and to clarify the differences between thermodynamic voltage and thermo-neutral voltage.

Fundamental Study of Unit Proton Exchange Membrane Electrolysis for Realtime Detection of Tritium (실시간 삼중수소 검출을 위한 단위 양성자 교환 막 전기분해 기초연구)

  • CHAE, JONGMIN;YU, SANGSEOK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.2
    • /
    • pp.226-234
    • /
    • 2018
  • Even though the nuclear power plants has many advantages, safety issues of nuclear power plants are crucial factors of reliable operation. A tritium detector is a useful sensor to analyze amount of exposed radiation from the nuclear power plants. Currently, concentration of underwater tritium is measured precisely but it takes very long time. Since electrolysis is extracted hydrogen from the coolant of nuclear power plant, it can motivate to develop new type of real-time sensor. In this study, Proton Exchange Membrane (PEM) electrolyzer is studied for candidate as preprocessor of real-time tritium detector. Characteristics of the unit PEM electrolyzer were experimentally investigated. A simulation model is developed to understand physical behavior of unit PEM electrolyzer under dynamic operation.

Effect of Electrolyte Concentration Difference on Hydrogen Production during PEM Electrolysis

  • Sun, Cheng-Wei;Hsiau, Shu-San
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.99-108
    • /
    • 2018
  • Proton exchange membrane (PEM) water electrolysis systems offer several advantages over traditional technologies including higher energy efficiency, higher production rates, and more compact design. In this study, all the experiments were performed with a self-designed PEM electrolyser operated at 1 atm and $25^{\circ}C$. Two types of electrolyte were used: (i) potassium hydroxide (KOH), and (ii) sulfuric acid ($H_2SO_4$). In the experiments, the voltage, current, and time were measured. The concentration of the electrolyte significantly affected the electrolyser performance. Overall the best case was with 15 wt% $H_2SO_4$ at the anode channel and 20 wt% at the cathode channel with. In addition, increasing the difference in concentration of the sulfuric acid had an effect on the diffusion. The diffusion flux became larger when the difference in concentration became larger, increasing electrolyser efficiency without the addition of extra energy.

Development of Bifunctional Electrocatalyst for PEM URFC (고분자 전해질 막을 이용한 일체형 재생 연료전지용 촉매전극 개발)

  • Yim, Sung-Dae;Park, Gu-Gon;Sohn, Young-Jun;Yang, Tae-Hyun;Yoon, Young-Gi;Lee, Won-Yong;Kim, Chang-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.1
    • /
    • pp.23-31
    • /
    • 2004
  • For the fabrication of high efficient bifunctional electrocatalyst of oxygen electrode for PEM URFC (Polymer Electrolyte Membrane Unitized Regenerative Fuel Cell), which is a promising energy storage and conversion system using hydrogen as the energy medium, several bifunctional electrocatalysts were prepared and tested in a single cell URFC system. The catalysts for oxygen electrode revealed fuel cell performance in the order of Pt black > PtIr > PtRuOx > PtRu ~ PtRuIr > PtIrOx, whereas water electrolysis performance in the order of PtIr ~ PtIrOx > PtRu > PtRuIr > PtRuOx ~ Pt black. Considering both reaction modes PtIr was the most effective elctrocatalyst for oxygen electrode of present PEM URFC system. In addition, the water electrolysis performance was significantly improved when Ir or IrOx was added to Pt black just 1 wt.% without the decrease of fuel cell performance. Based on the catalyst screening and the optimization of catalyst composition and loading, the optimum catalyst electrodes for PEM URFC were $1.0mg/cm^2$ of Pt black as hydrogen electrode and $2.0mg/cm^2$ of PtIr (99:1) as oxygen electrode.

Performance Degradation of Mea with Cation Contamination in Polymer Electrolyte Membrane Water Electrolysis (고분자 전해질막 수전해 막전극접합체의 양이온 오염에 따른 성능 저하)

  • JUNG, HYEYOUNG;CHOI, NAKHEON;IM, SUHYUN;YOON, DAEJIN;MOON, SANGBONG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.4
    • /
    • pp.331-337
    • /
    • 2017
  • Proton Exchange Membrane Water Electrolysis (PEMWE) is one of the most popular and widely used methods for hydrogen production. PEMWE contributes to eco-friendly system via its energy storage system application, hence making it environmentally friendly to use. However, its main drawback is contamination of proton exchange membrane during water electrolysis. Existing cation such as magnesium, calcium and the likes are the cause for membrane contamination. As a result, the cation contamination give rise to degradation of performance of electrolysis and the reverse electrolysis is effective method to remove cation.

Electrochemical Characteristics of Pt/PEM/Pt-Ru MEA for Water Electrolysis (수전해용 Pt/PEM/Pt-Ru MEA의 전기화학적 특성)

  • Kweon, Oh-Hwan;Kim, Kyung-Eon;Jang, In-Young;Hwang, Yong-Koo;Chung, Jang-Hoon;Moon, Sang-Bong;Kang, An-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.1
    • /
    • pp.18-25
    • /
    • 2008
  • The membrane electrode assembly(MEA) was prepared by a nonequilibrium impregnation- reduction (I-R) method. Nafion 117 and covalently cross-linked sulfonated polyetherether with tungsto- phosphoric acid (CL-SPEEK/TPA30) prepared by our laboratory, were chosen as polymer electrolyte membrane(PEM). $Pt(NH_3)_4Cl_2$, $RuCl_3$ and reducing agent $(NaBH_4)$ were used as electrocatalytic materials. Electrochemical activity surface area(ESA) and specific surface area(SSA) of Pt cathodic electrode with Nafion 117 were $22.48m^2/g$ and $23.50m^2/g$ respectively under the condition of 0.8 M $NaBH_4$. But Pt electrode prepared by CL-SPEEK/TPA30 membrane exhibited higher ESA $23.46m^2/g$ than that of Nafion 117. In case of Pt-Ru anodic electrode, the higher concentration of Ru was, the lower potential of oxygen reduction and region of hydrogen desorption was, and Pt-Ru electrode using 10 mM $RuCl_3$ showed best properties of SSA $34.09m^2/g$ with Nafion 117. In water electrolysis performance, the cell voltage of Pt/PEM/Pt-Ru MEA with Nafion 117 showed cell property of 1.75 V at $1A/cm^2$ and $80{\circ}C$. On the same condition, the cell voltage with CL-SPEEK/TPA30 was the best of 1.73 V at $1A/cm^2$.

Developing High-Performance Polymer Electrolyte Membrane Electrolytic Cell for Green Hydrogen Production (그린수소 생산을 위한 고성능 고분자 전해질막 전해조 개발 연구)

  • Choi, Baeck Beom;Jo, Jae Hyeon;Lee, Yae Rin;Kim, Jungsuk;Lee, Taehee;Jeon, Sang-Yun;Yoo, Young-Sung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.1
    • /
    • pp.137-143
    • /
    • 2021
  • As an electrochemical water electrolysis for green hydrogen production, both polymer electrolyte membrane (PEM) and alkaline electrolyte are being developed extensively in various countries. The PEM electrolyzer with high current density (above 2 A/cm2) has the advantage of being able to design a simple structure. Also, it is known that it has high response to electrical output fluctuations. However, the cost problem of major components is the most important issue that a PEM electrolyzer must overcome. Instantly, there are platinum group metal (PGM)-based electrocatalysts, fluorine-based polyfluoro sulfuric acid (PFSA) membrane, Ti felt (porous transport layer, PTL) and so on. Another challenging issue is productivity. A securing outstanding productivity brings price benefits of the electrolytic cells. From this point of view, we conducted basic studies on manufacturing electrode and membrane electrode assembly (MEA) for PEM electrolyzer production.

Operational Characteristics of High-Performance kW class Alkaline Electrolyzer Stack for Green Hydrogen Production

  • Choi, Baeck B.;Jo, Jae Hyeon;Lee, Taehee;Jeon, Sang-Yun;Kim, Jungsuk;Yoo, Young-Sung
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.302-307
    • /
    • 2021
  • Polymer electrolyte membrane (PEM) electrolyzer or alkaline electrolyzer is required to produce green hydrogen using renewable energy such as wind and/or solar power. PEM and alkaline electrolyzer differ in many ways, instantly basic materials, system configuration, and operation characteristics are different. Building an optimal water hydrolysis system by closely grasping the characteristics of each type of electrolyzer is of great help in building a safe hydrogen ecosystem as well as the efficiency of green hydrogen production. In this study, the basic operation characteristics of a kW class alkaline water electrolyzer we developed, and water electrolysis efficiency are described. Finally, a brief overview of the characteristics of PEM and alkaline electrolyzer for large-capacity green hydrogen production system will be outlined.