DOI QR코드

DOI QR Code

Effect of Electrolyte Concentration Difference on Hydrogen Production during PEM Electrolysis

  • Sun, Cheng-Wei (Dept. of Mechanical Engineering, National Central University) ;
  • Hsiau, Shu-San (Dept. of Mechanical Engineering, National Central University)
  • Received : 2018.01.17
  • Accepted : 2018.04.02
  • Published : 2018.06.30

Abstract

Proton exchange membrane (PEM) water electrolysis systems offer several advantages over traditional technologies including higher energy efficiency, higher production rates, and more compact design. In this study, all the experiments were performed with a self-designed PEM electrolyser operated at 1 atm and $25^{\circ}C$. Two types of electrolyte were used: (i) potassium hydroxide (KOH), and (ii) sulfuric acid ($H_2SO_4$). In the experiments, the voltage, current, and time were measured. The concentration of the electrolyte significantly affected the electrolyser performance. Overall the best case was with 15 wt% $H_2SO_4$ at the anode channel and 20 wt% at the cathode channel with. In addition, increasing the difference in concentration of the sulfuric acid had an effect on the diffusion. The diffusion flux became larger when the difference in concentration became larger, increasing electrolyser efficiency without the addition of extra energy.

Keywords

References

  1. O. Ulleberg, Int. J. of Hydrogen Energy, 2003, 28(1), 21-33. https://doi.org/10.1016/S0360-3199(02)00033-2
  2. K. Onda, T. Kyakuno, K. Hattori, and K. Ito, J. Power Sources, 2004, 132(1-2), 64-70. https://doi.org/10.1016/j.jpowsour.2004.01.046
  3. R. L. LeRoy, C. T. Bowen, and D. J. LeRoy, J. Electrochem. Soc., 1980, 127, 1954-1962. https://doi.org/10.1149/1.2130044
  4. J. Nie, Y. Chen, R. F. Boehm, and S. Katukota, J. Heat Transfer, 2008, 130, 1-6.
  5. T. Ioroi, K. Yasuda, Z. Siroma, N. Fjuiwara, and Y. Miyazaki, J. Power Sources, 2001, 112(2), 583-587. https://doi.org/10.1016/S0378-7753(02)00466-4
  6. P. Millet, F. Andolfatto, and R. Durand, Int. J. Hydrogen Energy, 1996, 21(2), 87-93. https://doi.org/10.1016/0360-3199(95)00005-4
  7. H. Cheng, K. Scott, and C. Ramshaw, J. Electrochem. Soc., 2002, 149(11), D172-D177. https://doi.org/10.1149/1.1512916
  8. S. A. Grigoriev, V. I. Porembsky, and V. N. Fateev, Int. J. Hydrogen Energy, 2006, 31(2), 171-175. https://doi.org/10.1016/j.ijhydene.2005.04.038
  9. F. Marangio, M. Santarelli, and M. Cali, Int. J. Hydrogen Energy, 2009, 34(93), 1143-1158. https://doi.org/10.1016/j.ijhydene.2008.11.083
  10. P. Sivasubramanian, R. P. Ramasamy, F. J. Freire, C. E. Holland, and J. W. Weidner, Int. J. Hydrogen Energy, 2007, 32(4), 463-468. https://doi.org/10.1016/j.ijhydene.2006.06.056
  11. A. Marshall, B. Borresen, G. Hagen, M. Tsypkin, and R. Tunold, Energy, 2005, 32(4), 431-436. https://doi.org/10.1016/j.energy.2006.07.014
  12. Diogo M. F. Santos and Cesar A. C. Sequeira, Quim. Nova, 2013, 36(8), 1176-1193. https://doi.org/10.1590/S0100-40422013000800017
  13. R. A. Rozendal, H. V. M. Hamelers, R. J. Molenkamp, and C. J. N. Buisman, Water Research, 2007, 41(9), 1984-1994. https://doi.org/10.1016/j.watres.2007.01.019
  14. R. A. Rozendal, T. H. J. A. Sleutels, H. V. M. Hamelers, and C. J. N. Buisman, Water Science & Technology, 2008, 57(11), 1757-1762. https://doi.org/10.2166/wst.2008.043
  15. M. D. Merrill, B. E. Logan, J. Power Sources, 2009, 191(2), 203-208. https://doi.org/10.1016/j.jpowsour.2009.02.077
  16. M. Macka, P. Andersson, and P. R. Haddad, Anal. Chem., 1998, 70(4), 743-749. https://doi.org/10.1021/ac970428p
  17. D. Kiuchi, H. Matsushima, Y. Fukunaka, and K. Kuribayashi, J. Electrochem. Soc., 2006, 153(8), E138-E143. https://doi.org/10.1149/1.2207008
  18. P. J. Sides, C. W. Tobias, J. Electrochem. Soc., 1980, 127, 288-291. https://doi.org/10.1149/1.2129657
  19. G. Kreysa, H. J. Kulps, J. Electrochem. Soc., 1981, 128(5), 979-984. https://doi.org/10.1149/1.2127585
  20. Biswajit Mandal, Amalesh Sirkar, Parameswar De, and Sunil Baran Kuila, International Journal of Research in Engineering and Technology, 2016, 05, 8-12.
  21. Fumihiro Kodera, Yu Kuwahara, Akira Nakazawa, and Minoru Umeda, J. Power Sources, 2007, 172(2), 698-703. https://doi.org/10.1016/j.jpowsour.2007.05.016
  22. C. Y. Wen, Y. S. Lin, and C. H. Lu, J. Power Sources, 2009, 192(2), 475-485. https://doi.org/10.1016/j.jpowsour.2009.03.058
  23. Z. Qi, A. Kaufman, J. Power Sources, 2002, 111(1), 181-184. https://doi.org/10.1016/S0378-7753(02)00273-2
  24. US Fuel Cell Council, Single Cell Test Protocol, US Fuel Cell Council, 2006.