References
- Y. T. Goh, R. Patel, S. J. Im, J. H. Kim, and B. R. Min, "Synthesis and characterization of poly (ether sulfone) grafted poly(styrene sulfonic acid) for proton conducting membranes", Korean J. Chem. Eng., 26, 518 (2009). https://doi.org/10.1007/s11814-009-0088-8
- H. Kang, C. H. Park, and C. H. Lee, "Development of molecular dynamics model for water electrolysis ionomer", Membr. J., 30, 433 (2020). https://doi.org/10.14579/MEMBRANE_JOURNAL.2020.30.6.433
- S. J. Im, R. Patel, S. J. Shin, J. H. Kim, and B. R. Min, "Sulfonated poly(arylene ether sulfone) membranes based on biphenol for direct methanol fuel cells", Korean J. Chem. Eng., 25, 732 (2008). https://doi.org/10.1007/s11814-008-0120-4
- T. K. Maiti, J. Singh, J. Majhi, A. Ahuja, S. Maiti, P. Dixit, S. Bhushan, A. Bandyopadhyay, and S. Chattopadhyay, "Advances in polybenzimidazole based membranes for fuel cell applications that overcome Nafion membranes constraints", Polymer, 255, 125151 (2022). https://doi.org/10.1016/j.polymer.2022.125151
- S. M. Lee, R. Patel, and J. H. Kim, "Recent advance in microbial fuel cell based on composite membranes", Membr. J., 31, 120 (2021). https://doi.org/10.14579/MEMBRANE_JOURNAL.2021.31.2.120
- Z. Chen, L. Guo, L. Pan, T. Yan, Z. He, Y. Li, C. Shi, Z.-F. Huang, X. Zhang, and J.-J. Zou, "Advances in oxygen evolution electrocatalysts for proton exchange membrane water electrolyzers", Adv. Energy Mater., 12, 2103670 (2022). https://doi.org/10.1002/aenm.202103670
- S. Shiva Kumar and V. Himabindu, "Hydrogen production by PEM water electrolysis - A review", Mater. Sci. Energy. Technol., 2, 442 (2019).
- B. Zhang, L. Fan, R. B. Ambre, T. Liu, Q. Meng, B. J. J. Timmer, and L. Sun, "Advancing proton exchange membrane electrolyzers with molecular catalysts", Joule, 4, 1408 (2020). https://doi.org/10.1016/j.joule.2020.06.001
- A. Selim, G. P. Szijjarto, L. Romanszki, and A. Tompos, "Development of WO3-Nafion based membranes for enabling higher water retention at low humidity and enhancing PEMFC performance at intermediate temperature operation", Polym., 14, 2492 (2022). https://doi.org/10.3390/polym14122492
- B.-H. Goo, S. Y. Paek, A. Z. Al Munsur, O. Choi, Y. Kim, O. J. Kwon, S. Y. Lee, H.-J. Kim, and T.-H. Kim, "Polyamide-coated Nafion composite membranes with reduced hydrogen crossover produced via interfacial polymerization", Int. J. Hydrogen Energy, 47, 1202 (2022). https://doi.org/10.1016/j.ijhydene.2021.10.074
- A. Muthumeenal, S. S. Pethaiah, and A. Nagendran, "Investigation of SPES as PEM for hydrogen production through electrochemical reforming of aqueous methanol", Renew. Energy, 91, 75 (2016). https://doi.org/10.1016/j.renene.2016.01.042
- S. Thiele, B. Mayerhofer, D. McLaughlin, T. Bohm, M. Hegelheimer, and D. Seeberger, "Bipolar membrane electrode assemblies for water electrolysis", ACS Appl. Ener. Mat., 3, 9635 (2020). https://doi.org/10.1021/acsaem.0c01127
- A. Z. Al Munsur, B. H. Goo, Y. Kim, O. J. Kwon, S. Y. Paek, S. Y. Lee, H. J. Kim, and T. H. Kim, "Nafion-based proton-exchange membranes built on cross-linked semi-interpenetrating polymer networks between poly(acrylic acid) and poly(vinyl alcohol)", ACS Appl. Mater. Interfaces, 13, 28188 (2021). https://doi.org/10.1021/acsami.1c05662
- T. Kim, Y. Sihn, I.-H. Yoon, S. J. Yoon, K. Lee, J. H. Yang, S. So, and C. W. Park, "Monolayer hexagonal boron nitride nanosheets as proton-conductive gas barriers for polymer electrolyte membrane water electrolysis", ACS Appl. Nano Mat., 4, 9104 (2021). https://doi.org/10.1021/acsanm.1c01691
- C. J. Lee, J. Song, K. S. Yoon, Y. Rho, D. M. Yu, K.-H. Oh, J. Y. Lee, T.-H. Kim, Y. T. Hong, H.-J. Kim, S. J. Yoon, and S. So, "Controlling hydrophilic channel alignment of perfluorinated sulfonic acid membranes via biaxial drawing for high performance and durable polymer electrolyte membrane water electrolysis", J. Power Sources, 518, 230772 (2022). https://doi.org/10.1016/j.jpowsour.2021.230772
- A. Albert, A. O. Barnett, M. S. Thomassen, T. J. Schmidt, and L. Gubler, "Radiation-Grafted polymer electrolyte membranes for water electrolysis cells: Evaluation of key membrane properties", ACS Appl. Mater. Interfaces, 7, 22203 (2015). https://doi.org/10.1021/acsami.5b04618
- J. Bender, B. Mayerhofer, P. Trinke, B. Bensmann, R. Hanke-Rauschenbach, K. Krajinovic, S. Thiele, and J. Kerres, "H+-conducting aromatic multiblock copolymer and blend membranes and their application in pem electrolysis", Polym., 13, 3467 (2021). https://doi.org/10.3390/polym13203467
- S. Choi, S. H. Shin, D. H. Lee, G. Doo, D. W. Lee, J. Hyun, S. H. Yang, D. Man Yu, J. Y. Lee, and H. T. Kim, "Oligomeric chain extender-derived poly(p-phenylene)-based multi-block polymer membranes for a wide operating current density range in polymer electrolyte membrane water electrolysis", J. Power Sources, 526, 231146 (2022). https://doi.org/10.1016/j.jpowsour.2022.231146
- S. Y. Han, D. M. Yu, Y. H. Mo, S. M. Ahn, J. Y. Lee, T. H. Kim, S. J. Yoon, S. Hong, Y. T. Hong, and S. So, "Ion exchange capacity controlled biphenol-based sulfonated poly(arylene ether sulfone) for polymer electrolyte membrane water electrolyzers: Comparison of random and multi-block copolymers", J. Membr. Sci., 634, 119370 (2021). https://doi.org/10.1016/j.memsci.2021.119370
- C. Klose, T. Saatkamp, A. Munchinger, L. Bohn, G. Titvinidze, M. Breitwieser, K.-D. Kreuer, and S. Vierrath, "All-hydrocarbon MEA for PEM water electrolysis combining low hydrogen crossover and high efficiency", Adv. Energy Mater., 10, 1903995 (2020). https://doi.org/10.1002/aenm.201903995
- S. Siracusano, V. Baglio, F. Lufrano, P. Staiti, and A. S. Arico, "Electrochemical characterization of a PEM water electrolyzer based on a sulfonated polysulfone membrane", J. Membr. Sci., 448, 209 (2013). https://doi.org/10.1016/j.memsci.2013.07.058
- N. R. Kang, T. H. Pham, H. Nederstedt, and P. Jannasch, "Durable and highly proton conducting poly(arylene perfluorophenylphosphonic acid) membranes", J. Membr. Sci., 623, 119074 (2021). https://doi.org/10.1016/j.memsci.2021.119074