• Title/Summary/Keyword: PEG Additive

Search Result 36, Processing Time 0.024 seconds

DSSCs Efficiencies of PEG Additive In TiO2 Paste (TiO2 Paste에 PEG 첨가에 따른 DSSC의 효율 특성)

  • Kwon, Sung-Yeol;Yang, Wook;Zhang, Zi-Heng
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.11
    • /
    • pp.746-752
    • /
    • 2014
  • Photo electrode is an important component of DSSC, so this paper did some research on it. Through the method of adding PEG additive into $TiO_2$ paste, the electrical characteristics and efficiencies of DSSCs with photo electrode surface area were studied. In the case of not adding PEG in $TiO_2$ paste, $26{\mu}m$ thickness $TiO_2$ photo electrode shows 5.081% efficiency. The highest short circuit current density was $10.476mA/cm2^$. The structure of porous $TiO_2$ film can be controlled through changing the PEG additive amount in $TiO_2$ paste and the molecular weight of PEG. When the additive amount of PEG 20,000 in $TiO_2$ paste reaches 5%, the peak efficiency with $26{\mu}m$ thickness $TiO_2$ photo electrode was 5.387% and its highest current density were $11.084mA/cm^2$.

Property Improvement of YBCO Thick films by EPD with Addition of PEG (PEG 첨가에 의한 YBCO 전착후막의 특성 향상)

  • 소대화;전용우
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.12
    • /
    • pp.1125-1130
    • /
    • 2003
  • The electrophoretic deposition method using the suspension solution with additives under the electric potential was applied for the fabrication of YBCO superconductor wire. This method was able to simplify the fabrication facilities, and produce an uniform and dense thick film. To improve the critical current density of deposited films, the additive PEGs(Poly Ethylene Glycole) with the molecular weight of 600, 1000 and 3400 were used as chemical binders for the suspension solution. The organic additive (PEG) showed better effects to the properties of YBCO superconductor wire. The PEG improved the adhesion between superconductor particles and suppressed the crack on the surface, which enhanced the surface uniformity and density of YBCO deposited film. It was found that acetone suspension solution showed better deposition properties than the others. The samples fabricated in the solution with the additive, 8 vol.% of 1% PEG(1000), showed the highest critical current density measured as 2300∼2400 A/$\textrm{cm}^2$ at 77 K, 0 T.

Performance and characterization of PEG400 modified PVC ultrafiltration membrane

  • Aryanti, P.T.P.;Yustiana, R.;Purnama, R.E.D.;Wenten, I.G.
    • Membrane and Water Treatment
    • /
    • v.6 no.5
    • /
    • pp.379-392
    • /
    • 2015
  • Polyvinyl chloride (PVC) ultrafiltration membrane was prepared by blending 12 wt.% of PVC in N, N-dimethylacetimide (DMAc) with polyethylene glycol 400 (PEG400) as an additive. The influence of PEG400 concentration on the PVC membrane morphology, permeability, fouling and rejection were investigated. Fouling and rejection of the PVC membrane were characterized by dextran T-100 filtration. The results showed that membrane water flux was increased up to $682Lm^{-2}h^{-1}$ when 28 wt.% of PEG400 was added into the PVC membrane solution. The best membrane performance with a low fouling and a high selectivity was achieved by adding 12 wt.% concentration of PEG400, which resulted in 90% rejection of dextran and 90% of flux recovery ratio. At further addition of PEG400 concentration, irreversible fouling was starting to increase. A 90% of irreversible fouling was formed in the PVC membrane when more than 22 wt.% of PEG400 is added.

Evaluation of Morphology and Water Flux for Polysulfone Flat Sheet Membrane with Conditions of Coagulation Bath and Dope Solution (응고조와 도프조성에 따른 폴리술폰 평막의 모폴로지 및 수투과도 평가)

  • Woo, Seung Moon;Chung, Youn Suk;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.22 no.4
    • /
    • pp.258-264
    • /
    • 2012
  • In this study, to research effect of coagulation bath and composition of dope solution, polysulfone flat sheet membrane was fabricated by phase inversion method. PEG and PVP were used as additive. Concentration of polymer and additive, composition of coagulation bath was controlled to prepare flat sheet membrane. And then the morphology and water flux of prepared membrane were measured by FE-SEM and water flux testing apparatus. The highest value of water flux was measured at the membrane prepared under a 15 wt% PSF, 25 wt% PEG conditions, and water as coagulation bath. The pure water flux of the membrane composed of PSf/PEG was drastically decreased with increasing amount of DMAc. We confirmed that change of amount in additive and composition in coagulation bath influence the morphology and water flux performance of the membrane.

Effects of PEG addition as an additive for electroplating of Cu at high current density (고전류밀도 전해도금 공정에서 PEG 첨가 효과)

  • Byeoung-Jae Kang;Jun-Seo Yoon;Jong-Jae Park;Tae-Gyu Woo;Il-Song Park
    • Journal of the Korean institute of surface engineering
    • /
    • v.57 no.4
    • /
    • pp.274-284
    • /
    • 2024
  • In this study, copper foil was electroplated under high current density conditions. We used Polyethylene Glycol (PEG), known for its thermal stability and low decomposition rate, as an inhibitor to form a stable and smooth copper layer on the titanium cathode. The electrolyte was composed of 50 g/L CuSO4 and 100 g/L H2SO4, MPSA as an accelerator, JGB as a leveler, and PEG as a suppressor, and HCl was added as chloride ions for improving plating efficiency. The copper foil electroplated in the electrolyte added PEG which induced to inhibit the growth of rough crystals. As a result, the surface roughness value was reduced, and a uniform surface was formed over a large area. Moreover, the addition of PEG led to priority growth to the (111) plane and the formation of polygonal crystals through horizontal and vertical growth of crystals onto the cathode. In addition, the grains became fine when more than 30 ppm of PEG was added. As the microcrystalline structure changed, mechanical and electrical properties were altered. With the addition of PEG, the tensile strength increased due to grain refinement, and the elongation was improved due to the uniform surface. However, as the amount of PEG added increased, the corrosion rate and resistivity increased due to grain refinement. Finally, it was possible to manufacture a copper foil with excellent electrical and mechanical properties and the best surface properties when electroplating was carried out under the condition of additives with Cl-20 ppm, MPSA 10 ppm, JGB 5 ppm, and PEG 10 ppm.

MD Simulation of PLA-PEG Composites for Additive Manufacturing (적층 가공에서 적용 가능한 PLA-PEG 복합재료의 MD Simulation)

  • Songhee Ham;Youngjoon Jeon
    • Applied Chemistry for Engineering
    • /
    • v.34 no.3
    • /
    • pp.285-290
    • /
    • 2023
  • Poly-lactic acid (PLA) is the most promising polymer in additive manufacturing as an alternative to acrylonitrile butadiene styrene (ABS). Since it is produced from renewable resources such as corn starch and sugar beets, it is also biocompatible and biodegradable. However, PLA has a couple of issues that limit its use. First, it has a comparatively low glass transition temperature of around 60 ℃, such that it exhibits low thermal resistance. Second, PLA has low impact strength because it is brittle. Due to these problems, scientists have found methods to improve the crystallinity and ductility of PLA. Polyethylene glycol (PEG) is one of the most studied plasticizers for PLA to give it chain mobility. However, the blend of PLA and PEG becomes unstable, and phase separation occurs even at room temperature as PEG is self-crystallized. Thus, it is necessary to investigate the optimal mixing ratio of PLA-PEG at the molecular scale. In this study, molecular dynamics will be conducted with various ratios of L-type PLA (PLLA) or DL-type PLA-PEG (PDLA-PEG) systems by using BIOVIA Materials Studio.

Critical Current Density Improvement of Superconducting YBCO Thick Film by using EPD Additives (전착 첨가물에 의한 전기영동 초전도 YBCO 후막선재의 임계전류밀도 개선)

  • Soh, Dea-Wha;Lim, Byong-Jae;Jeon, Yong-Woo;Park, Jung-Cheul;Choi, Sung-Jai
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.123-126
    • /
    • 2003
  • The electrophoretic deposition method using the suspension solution with additives under the electric potential was applied for the fabrication of YBCO superconductor wire. This method was able to simplify the fabrication facilities, and produce an uniform and dense thick film. To improve the critical current density of deposited films, the additive PEGs(Poly Ethylene Glycole) with the molecular weight of 600, 1000 and 3400, were used as chemical binders for the suspension solution. The organic additive PEG showed better effects to the properties of YBCO superconductor wire. The PEG improved the adhesion between superconductor particles and suppressed the crack on the surface, which enhanced the surface uniformity and density of YBCO deposited film. It was found that acetone suspension solution showed better deposition properties than the others. The samples fabricated in the solution with the additive, 8 vol.% of 1% PEG(1000), showed the highest critical current density measured as $2300{\sim}2400\;Acm^2$ at 77 K, 0 T.

  • PDF

Influence of polymer binder in suspension solution for EPDed YBCO Film (전기영동 YBCO 전착 막의 현탁액 바인더 영향)

  • Soh, Dea-Wha;Li, Ying-Mei;Park, Seong-Beom
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.37-40
    • /
    • 2002
  • Superconductor wire fabricated by electrophoresis showed its critical current density depended on parameters such as applied voltage and deposition time. Substrate and suspension solutions. and its properties are also important parameters. When same optimal parameter and condition was used, deposition density of superconductor film affect directly its critical current density. In this study, therefore, electrophoretic deposition technique was utilized for a densification of YBCO superconducting wire, and researches on electrophoretic suspension solutions and additive were experimentally performed for an improvement of the critical current density of fabricated electrophoretically superconducting wire. The samples fabricated in the solution with the additive, 8 vol.% of 1% PEG(1000), showed the highest critical current density.

  • PDF

Oxidative Conversion of Bisphenol A with Laccase in the Presence of Polyethylene Glycol (Polyethylene glycol (PEG) 수용액에서 laccase를 이용한 비스페놀A의 처리)

  • Kim, Young-Jin
    • Journal of Environmental Health Sciences
    • /
    • v.31 no.4 s.85
    • /
    • pp.241-245
    • /
    • 2005
  • Laccase catalyzes the oxidation and polymerization of aromatic compounds in the presence of molecular oxygen. Studies were conducted to characterize the use of polyethylene glycol (PEG) as an additive to keep up the enzymatic stability. The enzymatic activities highly remained and bisphenol A (BPA) was rapidly converted in the presence of 5 mg/l of PEC. These effects were accomplished with PEG of molecular weight 3,350. A linear relationship was found between the quantity of BPA to be converted $(10-120\;{\mu}M)$ and the optimum dose of PEC required for greater than $95\%$ conversion. This result suggests that it is the interaction between the PEG and the reaction products. In the optimum dose of PEG, the aeration of reaction mixture neither enhanced the conversion of BPA nor retarded the inactivation of the enzyme.

A study on the Additive Decomposition Generated during the Via-Filling Process (Via-Filling 공정시 발생하는 첨가제 분해에 관한 연구)

  • Lee, Min Hyeong;Cho, Jin Ki
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.4
    • /
    • pp.153-157
    • /
    • 2013
  • The defect like the void or seam is frequently generated in the PCB (Printed Circuit Board) Via-Filling plating inside via hole. The organic additives including the accelerating agent, inhibitor, leveler, and etc. are needed for the copper Via-Filling plating without this defect for the plating bath. However, the decomposition of the organic additive reduces the lifetime of the plating bath during the plating process, or it becomes the factor reducing the reliability of the Via-Filling. In this paper, the interaction of each organic additives and the decomposition of additive were discussed. As to the accelerating agent, the bis (3-sulfopropyl) disulfide (SPS) and leveler the Janus Green B (JGB) and inhibitor used the polyethlylene glycol 8000 (PEG). The research on the interaction of the organic additives and decomposition implemented in the galvanostat method. The additive decomposition time was confirmed in the plating process from 0 Ah/l (AmpereHour/ liter) to 100 Ah/l with the potential change.