DOI QR코드

DOI QR Code

DSSCs Efficiencies of PEG Additive In TiO2 Paste

TiO2 Paste에 PEG 첨가에 따른 DSSC의 효율 특성

  • Kwon, Sung-Yeol (Department of Electrical Engineering, Pukyong National University) ;
  • Yang, Wook (Department of Electrical Engineering, Pukyong National University) ;
  • Zhang, Zi-Heng (Department of Electrical Engineering, Graduate School Pukyong National University)
  • 권성열 (부경대학교 전기공학과) ;
  • 양욱 (부경대학교 전기공학과) ;
  • 장자항 (부경대학교 대학원 전기공학과)
  • Received : 2014.09.19
  • Accepted : 2014.10.10
  • Published : 2014.11.01

Abstract

Photo electrode is an important component of DSSC, so this paper did some research on it. Through the method of adding PEG additive into $TiO_2$ paste, the electrical characteristics and efficiencies of DSSCs with photo electrode surface area were studied. In the case of not adding PEG in $TiO_2$ paste, $26{\mu}m$ thickness $TiO_2$ photo electrode shows 5.081% efficiency. The highest short circuit current density was $10.476mA/cm2^$. The structure of porous $TiO_2$ film can be controlled through changing the PEG additive amount in $TiO_2$ paste and the molecular weight of PEG. When the additive amount of PEG 20,000 in $TiO_2$ paste reaches 5%, the peak efficiency with $26{\mu}m$ thickness $TiO_2$ photo electrode was 5.387% and its highest current density were $11.084mA/cm^2$.

Keywords

References

  1. B. O'Regan and M Gratzel, Nature, 353, 737 (1991). https://doi.org/10.1038/353737a0
  2. L. M. Peter, Phys. Chem. Chem. Phys., 9, 2630 (2007). https://doi.org/10.1039/b617073k
  3. Y. Zhang, Y. Shen, F. Gu, M. Wu, Y. Xie, and J. Zhang, Appl. Surf. Sci., 256, 85 (2009). https://doi.org/10.1016/j.apsusc.2009.07.074
  4. T. W. Hamann, R. A. Jensen, A.B.F. Martinson, Hal Van Ryswyk, and J. T. Hupp, Energy & Environmental Sci., 1, 66 (2008). https://doi.org/10.1039/b809672d
  5. S. Y. Kwon, W. Yang, and Z. Y. Zhou, J. KIEEME, 26, 3 (2013).
  6. H. J. Kim, D. Y. Lee, and J. S. Song, J. KIEEME, 18, 571 (2005).
  7. H. Cho, S. G Yu, and J. W. Cho, J. KIEEME, 22, 269 (2009).
  8. M.K.I. Senevirathna, P.K.D.D.P. Pitigala, E.V.A. Premalal, K. Tennakone, G.R.A. Kumara, and A. Konno, Sol. Energ. Mater. Sol. Cells., 91, 544 (2007). https://doi.org/10.1016/j.solmat.2006.11.008
  9. P. Qin, M. Linder, T. Brink, G. Boschloo, A. Hagfeldt, and L. Sun, Adv. Mater., 21, 2993 (2009). https://doi.org/10.1002/adma.200802461
  10. B. Tan, E. Toman, Y. Li, and Y. Wu, J. Am. Chem. Soc., 129, 4162 (2007). https://doi.org/10.1021/ja070804f
  11. C. S. Chou, Y. J. Lin, R. Y. Yang, and K. H. Liu, Adv. Powder Technol., 22, 31 (2011). https://doi.org/10.1016/j.apt.2010.03.003
  12. K. Kajihara and T. Yao, J. Sol-Gel Sci. Technol., 12, 185 (1998). https://doi.org/10.1023/A:1008602419045
  13. L. Zhang, Y. Zhu, Y. He, W. Li, and H. Sun, Appl. Catal. B-Environ., 1243, 1 (2002).
  14. H. J. Koo and N. G. Park, Inorg. Chim. Acta., 361, 667 (2008).
  15. X. G Zhao, E. M. Jin, and H. B. Gu, J. KIEEME, 24, 427 (2011).
  16. H, S Park. S. Y. Kwon, and W. Yang, J. KIEEME, 25, 7 (2012).
  17. S. Ito, P. Chen, P. Comte, M. K. Nazeeruddin, P. Liska, P. Pechy, and M. Gratzel, Prog. Photovolt: Res. Appl., 10, 1002 (2007).
  18. B. Munkhbayar, S. H. Huang, J. H. Kim, K. Y. Bae, M. K. Ji, H. S. Chang, and H. M. Jeong, Electorchimica Acta, 80, 1 (2012). https://doi.org/10.1016/j.electacta.2012.05.162
  19. X. Z. Liu, Z. Huang, K. X. Li, H. Li, D. M. Li, L. Q. Chen, and Q. B. Meng, Chinese Phys. Lett., 23, 2606 (2006). https://doi.org/10.1088/0256-307X/23/9/071
  20. H. Chang, C. H. Chen, M. J. Kao, S. H. Chien, and C. Y. Chou, Appl. Surf. Sci., 275, 15 (2013).
  21. S. Y. Kwon, W. Yang, and Z. Y. Zhou, J. KIEEME, 27, 2 (2014).
  22. Q. H. Tian, G. L. Zhao, and G. Y. Han, J. Funct. Mater., 35, 02 (2004).