• 제목/요약/키워드: PD Control

검색결과 802건 처리시간 0.022초

강인한 성능을 가지는 최적 PD 제어 시스템 설계 (A design on optimal PD control system that has the robust performance)

  • 김동완;황현준
    • 제어로봇시스템학회논문지
    • /
    • 제5권6호
    • /
    • pp.656-666
    • /
    • 1999
  • In this paper, we design the optimal PD control system which has the robust performance. This PD control system is designed by applying genetic algorithm (GA) to the determination of proportional gain KP and derivative gain KD that are given by PD servo controller, to make the output of plant follow the output of reference model optimally. These proportional and derivatibe gains are simultaneously optimized in the search domain guaranteeing the robust performance of system. And, this PD control system is compared with $\mu$ -synthesis control system for the robust performance. The PD control system designed by the proposed method has not only the robust performance but also the better command tracking performance than that of the $\mu$ -synthesis control system. The effectiveness of this control system is verified by computer simulation.

  • PDF

위치제어를 위한 I-PD제어계에서 PD제어기의 설계 (Design of the PD Controller in the I-PD Control System for Position Control)

  • 김성대
    • 융합신호처리학회논문지
    • /
    • 제10권4호
    • /
    • pp.262-266
    • /
    • 2009
  • 산업 현장에서 요구하는 위치제어계는 고속, 고정밀의 제어를 만족하여야 하므로, 취급과 제어가 용이하고 응답특성이 우수한 직류 서보 전동기를 많이 이용하고 있다. 위치제어계에서 제어 성능을 개선시키기 위해서 많은 위치제어기법들이 제안되어져 왔다. 본 논문에서는 I-PD 위치제어계에서 PD제어기를 설계할 수 있는 설계법을 제안하였다. 제안한 설계법은 계의 전달함수를 정규화하여 제어계에서 제어기의 계수들이 결정되도록 하였다. 그리고 계의 안정조건과 근의 조건을 수학적으로 유도하였다. 이 방법을 I-PD제어계에 적용하여 PD제어기의 비례 및 미분 계수를 결정하였다. 그리고 이 제어기법을 적용한 I-PD 제어계를 시뮬레이션하여 계단 입력신호 및 외란 인가 시 계의 응답을 고찰하여 제안한 제어기법의 유효성을 검토하였다.

  • PDF

PD-슬라이딩 모드 제어의 절환을 통한 강인한 SPMSM 속도 제어기 설계 (Design of SPMSM Robust Speed Servo Controller Switching PD and Sliding Mode Control Strategies)

  • 손주범;서영수;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제16권3호
    • /
    • pp.249-255
    • /
    • 2010
  • The paper proposes a new type of robust speed control strategy for permanent magnet synchronous motor by using PD-sliding mode hybrid control. The PD control has a good performance in the transient region while the sliding mode controller provides the robustness against system uncertainties. Taking advantages of the two control strategies, the proposed control method utilizes the PD control in the approaching region to the sliding surface and the sliding mode control near at the sliding surfaces. The chattering problem of the sliding mode controller is eliminated by applying the saturation function for the switching function of the sliding mode control. The stability of the sliding mode control is verified by using Lyapunov function with the proper selection of variable gains. It is shown that with this simple switching algorithm, stability of the overall hybrid control system is ensured. Through the simulations, the PD-sliding mode algorithm is shown to have a good performance in the transient response as well as being robust against disturbances. The robustness of the PD-sliding mode algorithm is further demonstrated against various external disturbances in the real experiments of SPMSM motor control.

PD-슬라이딩 모드를 이용한 다 관절 매니퓰레이터 제어 (Control of Multi-Joint Manipulator Using PD-Sliding Mode)

  • 손현석;이원기;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제14권12호
    • /
    • pp.1286-1293
    • /
    • 2008
  • This paper proposes a realization of robust trajectory tracking for an industrial robot by using PD-sliding mode hybrid control. The PD control has a good performance in the transient period while the sliding mode control has robustness against the system uncertainties. The proposed control method is proposed for the control of a multi-joint robot by taking advantages of both the PD and sliding mode controls. The embodiment of distributed controllers that drive 4-DOF axes has evaluated through experiments with the multi-joint robot AT1. The PD-sliding mode algorithm which is proposed in this paper shows a good performance in the transient period and robustness against disturbances and This paper shows accuracy of end-effector.

2개의 은닉층을 가진 신경망에 의한 확대 I-PD제어계의 구성 (Construction of the expanded I-PD control system by Neural network with two hidden layers)

  • 강동원;김대성;하홍곤;고태언
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 1999년도 학술대회논문집-국제 전기방전 및 플라즈마 심포지엄 Proceedings of 1999 KIIEE Annual Conference-International Symposium of Electrical Discharge and Plasma
    • /
    • pp.256-261
    • /
    • 1999
  • Many control techniques have been proposed in order to improve the control performance of discrete-time domain control system. In the position control system using a DC servo motor as control system, the response-characteristic of system is controlled by the I-PD controller. In the I-PD longer if gains of I-PD controller are unsuitable. In this paper, therefore, a expanded I-PD control system is constructed by inserting a pre-compensator at out terminal of I-PD controller. It is implemented by neural network with two hidden layers. From the result of computer simulation in the proposed control algorithm, its usefulness is verified.

  • PDF

PD제어와 LQR을 이용한 병진 시스템의 제어특성 연구 (A Study on Control Characteristics of Translation System Using PD Control and LQR)

  • 김택현;정상화;이동하
    • 한국공작기계학회논문집
    • /
    • 제10권5호
    • /
    • pp.78-84
    • /
    • 2001
  • The translation system is made up of springs, masses and a dashpot. This precise piece of equipment is controlled electro-mechanically by a motor and operating program. The control strategy of the system can be changed by spring stiffness, change of mass, and the damping coefficient of the dashpot. This system proves the necessity and effect of a closed loop control. In this paper, PD control experiments were implemented for the translation system. When the north falter was added on the PD controller, we compared the response characteristics of the two systems. The state feedback controller minimized scalar control gains and the resulting response characteristics of the system were studied using the LQR design. Finally, we improved the response characteristics of the translation system which are rising time, settling time, steady state error, and overshoot LQR was better as compared with PD control.

  • PDF

신경회로망을 이용한 서보 실린더의 운동제어 (Motion Control of Servo Cylinder Using Neural Network)

  • 황운규;조승호
    • 대한기계학회논문집A
    • /
    • 제28권7호
    • /
    • pp.955-960
    • /
    • 2004
  • In this paper, a neural network controller that can be implemented in parallel with a PD controller is suggested for motion control of a hydraulic servo cylinder. By applying a self-excited oscillation method, the system design parameters of open loop transfer function of servo cylinder system are identified. Based on system design parameters, the PD gains are determined for the desired closed loop characteristics. The Neural Network is incorporated with PD control in order to compensate the inherent nonlinearities of hydraulic servo system. As an application example, a motion control using PD-NN has been performed and proved its superior performance by comparing with that of a PD control.

GA를 이용한 강인한 성능을 가지는 PD 제어기의 설계에 관한 연구 (A Study of Design on PD Controller Having Robust Performance Using GA)

  • 김동완;손무헌;황현준;박진현;윤영대;도대호;최종헌
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 B
    • /
    • pp.795-797
    • /
    • 1998
  • This paper suggests a design method of the optimal PD control system having robust performance. This PD control system is designed by applying genetic algorithm(GA) with reference model to the optimal determination of proportional(P) gain and derivative(D) gain that are given by PD servo controller. These proportional and derivative gains are simultaneously optimized in the search domain guaranteeing the robust performance of closed-loop system. This PD control system is applied to the fuel-injection control system of diesel engine and compared with ${\mu}$ -synthesis control system for robust performance. The effectiveness of this PD control system is verified by computer simulation.

  • PDF

Robust Back-Stepping Control with Polynomial-type PD input for Flexible Joint Robot Manipulators

  • Lee, Jae-Young;Park, Jong-Hyeon
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.927-932
    • /
    • 2007
  • This paper proposes a robust back-stepping control with polynomial-type PD input for flexible joint robot manipulators to overcome parameter uncertainty. In the first step, a fictitious control is designed with polynomial-type PD input for the rigid link dynamic by the H-infinity control method. In second and third steps, the other fictitious control and real control are designed using saturation control and polynomial-type PD input based on the Lyapunov's second method. In each step, the designed robust inputs satisfy the L2-gain, which is equal to or less than gamma in the closed loop system. In contrast with the previous researches, the proposed method proves performance relations with PD gain from the robust gain. The performance robustness of the proposed control is verified through a 2-DOF robot manipulator with joint flexibility.

  • PDF

Hybrid PD-Servo State Feedback Control Algorithm for Swing up Inverted Pendulum System

  • Nundrakwang, Songmoung;Benjanarasuth, Taworn;Ngamwiwit, Jongkol;Komine, Noriyuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.690-693
    • /
    • 2005
  • In this paper, a hybrid PD-servo state feedback control algorithm for swing up inverted pendulum system is proposed. It consists of two parts. The first part is the PD position control for swinging up the pendulum from the natural pendent position to around the upright position and the second part is the servo state feedback control for stabilizing the inverted pendulum in upright position. The first controller is PD controller and it is tuned to control the position of the pendulum by moving the cart back and forth until the pendulum swings up around the upright position. Then the second controller will be switched to stabilize the inverted pendulum in its upright position. The controller in this stage is the servo state feedback controller designed by pole placement. Experimental results of PD type swinging up control system, of stabilizing servo state feedback control system and of the proposed hybrid PD-servo state feedback control system to swing up and stabilize inverted pendulum show that the proposed method is effective and reliable for actual implementation while it is simple.

  • PDF