• Title/Summary/Keyword: PCA(principal component analysis)

Search Result 1,240, Processing Time 0.029 seconds

A Method of Integrating Scan Data for 3D Face Modeling (3차원 얼굴 모델링을 위한 스캔 데이터의 통합 방법)

  • Yoon, Jin-Sung;Kim, Gye-Young;Choi, Hyung-Il
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.6
    • /
    • pp.43-57
    • /
    • 2009
  • Integrating 3D data acquired in multiple views is one of the most important techniques in 3D modeling. However, the existing integration methods are sensitive to registration errors and surface scanning noise. In this paper, we propose a integration algorithm using the local surface topology. We first find all boundary vertex pairs satisfying a prescribed geometric condition in the areas between neighboring surfaces, and then separates areas to several regions by using boundary vertex pairs. We next compute best fitting planes suitable to each regions through PCA(Principal Component Analysis). They are used to produce triangles that be inserted into empty areas between neighboring surfaces. Since each regions between neighboring surfaces can be integrated by using local surface topology, a proposed method is robust to registration errors and surface scanning noise. We also propose a method integrating of textures by using parameterization technique. We first transforms integrated surface into initial viewpoints of each surfaces. We then project each textures to transformed integrated surface. They will be then assigned into parameter domain for integrated surface and be integrated according to the seaming lines for surfaces. Experimental results show that the proposed method is efficient to face modeling.

3D Model Retrieval Using Sliced Shape Image (단면 형상 영상을 이용한 3차원 모델 검색)

  • Park, Yu-Sin;Seo, Yung-Ho;Yun, Yong-In;Kwon, Jun-Sik;Choi, Jong-Soo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.6
    • /
    • pp.27-37
    • /
    • 2008
  • Applications of 3D data increase with advancement of multimedia technique and contents, and it is necessary to manage and to retrieve for 3D data efficiently. In this paper, we propose a new method using the sliced shape which extracts efficiently a feature description for shape-based retrieval of 3D models. Since the feature descriptor of 3D model should be invariant to translation, rotation and scale for its model, normalization of models requires for 3D model retrieval system. This paper uses principal component analysis(PCA) method in order to normalize all the models. The proposed algorithm finds a direction of each axis by the PCA and creates orthogonal n planes in each axis. These planes are orthogonalized with each axis, and are used to extract sliced shape image. Sliced shape image is the 2D plane created by intersecting at between 3D model and these planes. The proposed feature descriptor is a distribution of Euclidean distances from center point of sliced shape image to its outline. A performed evaluation is used for average of the normalize modified retrieval rank(ANMRR) with a standard evaluation from MPEG-7. In our experimental results, we demonstrate that the proposed method is an efficient 3D model retrieval.

Development of Recognition Application of Facial Expression for Laughter Theraphy on Smartphone (스마트폰에서 웃음 치료를 위한 표정인식 애플리케이션 개발)

  • Kang, Sun-Kyung;Li, Yu-Jie;Song, Won-Chang;Kim, Young-Un;Jung, Sung-Tae
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.4
    • /
    • pp.494-503
    • /
    • 2011
  • In this paper, we propose a recognition application of facial expression for laughter theraphy on smartphone. It detects face region by using AdaBoost face detection algorithm from the front camera image of a smartphone. After detecting the face image, it detects the lip region from the detected face image. From the next frame, it doesn't detect the face image but tracks the lip region which were detected in the previous frame by using the three step block matching algorithm. The size of the detected lip image varies according to the distance between camera and user. So, it scales the detected lip image with a fixed size. After that, it minimizes the effect of illumination variation by applying the bilateral symmetry and histogram matching illumination normalization. After that, it computes lip eigen vector by using PCA(Principal Component Analysis) and recognizes laughter expression by using a multilayer perceptron artificial network. The experiment results show that the proposed method could deal with 16.7 frame/s and the proposed illumination normalization method could reduce the variations of illumination better than the existing methods for better recognition performance.

Characterizing CO2 Supersaturation and Net Atmospheric Flux in the Middle and Lower Nakdong River (낙동강 중하류에서 이산화탄소 과포화 및 순배출 특성 분석)

  • Lee, Eun Ju;Chung, Se Woong;Park, Hyung Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.416-416
    • /
    • 2019
  • 육상 담수는 대기중 이산화탄소($CO_2$) 배출의 중요한 발생원으로 주목되고 있다. 하천 및 강에서 대기중으로 배출되는 $CO_2$는 전 세계 탄소순환의 핵심요소이며, 대부분의 하천과 강은 $CO_2$로 과포화 되어있다. 세계적으로 하천 및 강의 $CO_2$ 배출량은 호수 및 저수지의 배출량보다 약 5배 많은 것으로 보고되고 있으나, 국내연구에서는 연구사례가 드물다. 따라서 본 연구의 목적은 낙동강 중하류에 위치해있는 강정고령보(GGW), 달성보(DSW), 합천창녕보(HCW), 창녕함안보(CHW)에서 발생되는 순 대기 배출 플럭스(Net Atmospheric Flux, NAF)의 동적 변동 특성을 분석하고, 데이터마이닝 기법을 적용하여 쉽게 수집할 수 있는 물리적 및 수질 변수로 $CO_2$ NAF를 추정하는데 사용할 수 있는 간략한 예측 모델을 개발하는데 있다. $CO_2$ NAF는 대기-수면 경계면에서의 $CO_2$ 부분압($pCO_2$)의 차에 기체전달속도를 곱하여 산정하였으며, 기체전달속도는 Cole and Caraco(1998)가 제안한 식을 사용하였다. 담수와 해수의 탄산염 시스템에서 열역학적 화학평형을 모두 고려한 $CO_2$SYS 프로그램을 사용하여 수중의 $pCO_2$를 산정하였고, $CO_2$ NAF는 Henry의 법칙과 Fick의 1차 확산법칙을 사용하여 계산하였다. $CO_2$ NAF의 시간적 변동성에 영향을 미치는 환경요인을 평가하기 위해서 상관분석, 주성분분석(Principal Component Analysis; PCA), 단계적다중회귀모델(Step-wise Multiple Linear Regression; SMLR), 랜덤포레스트(Random Forest; RF)방법을 사용하였다. SMLR 모델은 R package인 olsrr, RF 모델은 R package인 caret, randomForest를 이용하여 분석하였다. 연구 결과, 4개 보 상류 하천구간은 조류의 성장이 활발한 일부 기간을 제외한 대부분의 기간에서 $CO_2$를 대기로 배출하는 종속영양시스템(Heterotrophic system)을 보였다. $CO_2$ NAF의 중위값은 HCW에서 최소 $391.5mg-CO_2/m^2day$, DSW에서 최대 $1472.7mg-CO_2/m^2day$였다. 모든 보에서 NAF는 pH와 강한 음의 상관관계를 보였으며, $pCO_2$와 Chl-a도 음의 상관관계를 보였다. 이는 조류가 수중에서 $CO_2$를 소비하고 pH를 증가시키기 때문이다. PCA 분석 결과, NAF와 $pCO_2$가 높은 공분산을 보였으며, pH와 Chl-a는 반대 방향으로 군집되어 상관분석과 동일한 결과를 보였다. 이 연구를 통해 개발된 SMLR 모델과 RF 모델의 Adj. $R^2$ 값은 모든 보에서 0.77 이상으로 나왔으며, $pCO_2$ 측정 데이터가 없더라도 하천의 $CO_2$ NAF를 추정하는 방법으로 사용될 수 있을 것으로 평가된다.

  • PDF

Urban Vitality Assessment Using Spatial Big Data and Nighttime Light Satellite Image: A Case Study of Daegu (공간 빅데이터와 야간 위성영상을 활용한 도시 활력 평가: 대구시를 사례로)

  • JEONG, Si-Yun;JUN, Byong-Woon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.4
    • /
    • pp.217-233
    • /
    • 2020
  • This study evaluated the urban vitality of Daegu metropolitan city in 2018 using emerging geographic data such as spatial big data, Wi-Fi AP(access points) and nighttime light satellite image. The emerging geographic data were used in this research to quantify human activities in the city more directly at various spatial and temporal scales. Three spatial big data such as mobile phone data, credit card data and public transport smart card data were employed to reflect social, economic and mobility aspects of urban vitality while public Wi-Fi AP and nighttime light satellite image were included to consider virtual and physical aspects of the urban vitality. With PCA (Principal Component Analysis), five indicators were integrated and transformed to the urban vitality index at census output area by temporal slots. Results show that five clusters with high urban vitality were identified around downtown Daegu, Daegu bank intersection and Beomeo intersection, Seongseo, Dongdaegu station and Chilgok 3 district. Further, the results unveil that the urban vitality index was varied over the same urban space by temporal slots. This study provides the possibility for the integrated use of spatial big data, Wi-Fi AP and nighttime light satellite image as proxy for measuring urban vitality.

Drought risk assessment considering regional socio-economic factors and water supply system (지역의 사회·경제적 인자와 용수공급체계를 고려한 가뭄 위험도 평가)

  • Kim, Ji Eun;Kim, Min Ji;Choi, Sijung;Lee, Joo-Heon;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.8
    • /
    • pp.589-601
    • /
    • 2022
  • Although drought is a natural phenomenon, its damage occurs in combination with regional physical and social factors. Especially, related to the supply and demand of various waters, drought causes great socio-economic damage. Even meteorological droughts occur with similar severity, its impact varies depending on the regional characteristics and water supply system. Therefore, this study assessed regional drought risk considering regional socio-economic factors and water supply system. Drought hazard was assessed by grading the joint drought management index (JDMI) which represents water shortage. Drought vulnerability was assessed by weighted averaging 10 socio-economic factors using Entropy, Principal Component Analysis (PCA), and Gaussian Mixture Model (GMM). Drought response capacity that represents regional water supply factors was assessed by employing Bayesian networks. Drought risk was determined by multiplying a cubic root of the hazard, vulnerability, and response capacity. For the drought hazard meaning the possibility of failure to supply water, Goesan-gun was the highest at 0.81. For the drought vulnerability, Daejeon was most vulnerable at 0.61. Considering the regional water supply system, Sejong had the lowest drought response capacity. Finally, the drought risk was the highest in Cheongju-si. This study identified the regional drought risk and vulnerable causes of drought, which is useful in preparing drought mitigation policy considering the regional characteristics in the future.

Objective and Relative Sweetness Measurement by Electronic-Tongue (전자혀를 이용한 객관적 상대 단맛 측정)

  • Park, So Yeon;Na, Sun Young;Oh, Chang-Hwan
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.921-926
    • /
    • 2022
  • Sugar solutions (5%, 10%, 15% and 20%) were tested by seven sensors of Astree E-Tongue for selecting a sensor for sweetness. NMS sensor was chosen as a sensor for sweetness among two sensors (PKS and NMS sensors selected in first stage) by considering precision, linearity and accuracy. Sugar, fructose, glucose and xylitol (5%, 10% and 15%) were tested by E-tongue. The principal component analysis (PCA) result by E-Tongue with seven sensors at 5% concentration level of four sweetners was not satisfactory (Discrimination index was -0.1). On the other hand, the relative NMS sensor response values were derived as 1.08 (fructose), 0.99 (glucose) and 1.00 (xylitol) comparing to sugar. Only the E-Tongue relative glucose response 0.99 was different from 0.5~0.75 of the relative sweetness range reported as the human sensory test results. Considering the excellent precision (%RSD, 1.53~3.64%) of E-Tongue using NMS single sensor for three types of sweeteners compared to sugar in the concentration range of 5% to 15%, replacing sensory test of sweetened beverages by E-Tongue might be possible for new product development and quality control.

Apartment Price Prediction Using Deep Learning and Machine Learning (딥러닝과 머신러닝을 이용한 아파트 실거래가 예측)

  • Hakhyun Kim;Hwankyu Yoo;Hayoung Oh
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.2
    • /
    • pp.59-76
    • /
    • 2023
  • Since the COVID-19 era, the rise in apartment prices has been unconventional. In this uncertain real estate market, price prediction research is very important. In this paper, a model is created to predict the actual transaction price of future apartments after building a vast data set of 870,000 from 2015 to 2020 through data collection and crawling on various real estate sites and collecting as many variables as possible. This study first solved the multicollinearity problem by removing and combining variables. After that, a total of five variable selection algorithms were used to extract meaningful independent variables, such as Forward Selection, Backward Elimination, Stepwise Selection, L1 Regulation, and Principal Component Analysis(PCA). In addition, a total of four machine learning and deep learning algorithms were used for deep neural network(DNN), XGBoost, CatBoost, and Linear Regression to learn the model after hyperparameter optimization and compare predictive power between models. In the additional experiment, the experiment was conducted while changing the number of nodes and layers of the DNN to find the most appropriate number of nodes and layers. In conclusion, as a model with the best performance, the actual transaction price of apartments in 2021 was predicted and compared with the actual data in 2021. Through this, I am confident that machine learning and deep learning will help investors make the right decisions when purchasing homes in various economic situations.

Variations in Ecological Niche of Quercus variabilis and Quercus acutissima Leaf Morphological Characters in Response to Moisture and Nutrient Gradient Treatments under Climate Change Conditions (기후변화 조건에서 수분구배 및 영양소 구배에 따른 굴참나무와 상수리나무 잎 형태적 특성의 생태지위 변화)

  • Park, Yeo-Bin;Kim, Eui-Joo;Park, Jae-Hoon;Kim, Yoon-Seo;Park, Ji-Won;Lee, Jung-Min;You, Young-Han
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.27 no.2
    • /
    • pp.43-53
    • /
    • 2024
  • This study attempted to elucidate the ecological niches and influencing environmental factors of Quercus variabilis and Quercus acutissima, which are representative deciduous broad-leaved trees in Korean forests, taxonomically close and genetically similar, under climate change conditions. Under climate change conditions induced by increased CO2 and temperature, soil moisture and nutrient environments were manipulated in four gradients. At the end of the growing, plants were harvested to measure growth responses, calculate ecological niches, and compare them with those of the control. Eperimental plants were grown for 180 days in a glass greenhouse designed with four gradients each for soil moisture and nutrient environments under climate change conditions induced by increased CO2 and temperature. After harvesting, growth responses of leaf traits were measured, ecological niches were calculated, and these were compared with those of the control groups. Furthermore, the responses of the two species' populations were interpreted using principal component analysis(PCA) based on leaf trait measurements. As a result, under climate change conditions, the ecological niche breadth for moisture environment was broader for Quercus variabilis than Quercus acutissima, whereas for the nutrient environment, Quercus acutissima exhibited a broader niche breadth than Quercus variabilis. And the rate of change in ecological niche breadth due to climate change decreased for Quercus variabilis in both moisture and nutrient environments, while for Quercus acutissima, it increased in the moisture environment but decreased in the nutrient environment. Additionally, in terms of group responses, both Quercus variabilis and Quercus acutissima expanded their ecological niches under climate change conditions in both soil moisture and nutrient conditions, with Quercus acutissima exhibiting a broader niche than Quercus variabilis under nutrient conditions. These results indicate that the changes in leaf morphological characteristics and the responses of individuals reflecting them vary not only under climate change conditions but also depending on environmental factors.

A study on ESG Management Guidelines for Small and Medium-sized Logistics Enterprises (중소·중견 물류기업 ESG 경영 이행 가이드라인에 관한 연구)

  • Maowei Chen;Hyangsook Lee;Kyongjun Yun
    • Journal of Korea Port Economic Association
    • /
    • v.39 no.4
    • /
    • pp.147-161
    • /
    • 2023
  • As global challenges, particularly climate change, become more pressing, there is a growing global awareness of Environmental, Social, and Governance (ESG) management. Given the crucial role played by the logistics industry in the complex network of the global supply chain, various societal stakeholders are emphasizing the necessity for logistics entities to practice ESG management. Despite the comprehensive ESG guidelines established by Korea for all enterprises, a notable limitation arises from its inadequate consideration of the distinctive features inherent to logistics enterprises, especially those of a smaller and medium scale. Accordingly, this study conducts a thorough examination of existing ESG guidelines, sustainable management approaches in large-scale logistics enterprises, and prior research to identify potential ESG management diagnostic criteria relevant to small and medium-sized logistics enterprises, including aspects such as Public(P), Environmental(E), Social(S), and Governance(G). To streamline the diagnostic criteria, taking into account the unique characteristics of small and medium-sized logistics enterprises, this study conducts a survey involving 60 logistics company personnel and experts from academic and research domains. The collected data undergoes Principal Component Analysis (PCA), revealing that the four dimensions of information disclosure can be consolidated into a single dimension. Additionally, environmental criteria reduce from 16 to 3 items, societal considerations decrease from 22 to 7 items, and governance structures distill from 20 to 5 items. This empirical endeavor is deemed significant in presenting tailored ESG management diagnostic criteria aligned with the specificities of small and medium-sized logistics enterprises. The findings of this study are expected to serve as a foundational resource for the development of guidelines by relevant entities, promoting the wider adoption of ESG management practices in the sphere of small and medium-sized logistics enterprises in the near future. population coming from areas other than Gwangyang, where Gwangyang Port is located.