• Title/Summary/Keyword: PCA(Principal Component Analysis

Search Result 1,243, Processing Time 0.032 seconds

A Study on the Classification of Islands by PCA(II) (PCA에 의한 도서분류에 관한 연구(II))

  • 이강우;남수현
    • The Journal of Fisheries Business Administration
    • /
    • v.15 no.1
    • /
    • pp.58-80
    • /
    • 1984
  • The classification of islands is prerequisite for establishing a development policy to vitalize many-sided function of islands. We try to classify the 440 inhabited islands which exist in Jeon-Nam area and Kyong-Nam area by means of PCA. PCA begins with making correlation matrix of orignal variables. From this matrix we can comprehend the rough relationships between two variables. Next, we look for the eigenvalues which are roots of characteristic equation of correlation matrix. The number of eigenvalues is equal to that of original variables. We choose the largest eigenvalue λ$_1$among them and then look for the eigenvector of correlation matrix corresponding to the largest eigenvalue. Linear combination of eigenvector obtained above and original variables is namely first Principal Component (PC). Using an eigenvalue criterion(λ$\geq$ 1), we choose 3 PCs in Jeon-Nam area and 2 PCs in Kyong-Nam area. But we decide to consider only two PCs in both areas to faciliate a comparative analysis. Now, loss of information is 31.7% in Jeon-Nam area and 26.64% in Kyong-Nam area. PCs extracted by preceding procedure have characteristics as follows. The first PC relates to aggregate size of islands in case of both areas. The second PC relates to income per household, factors of agricultural production and factors of fisheries production in Jeon-Nam area, but in Kyong-Nam area it means distance from island and income per household. A classification of islands can be attained by plotting component scores of each island in graph used two PCs as axes and grouping similiar islands. 6 groups are formed in Jeon-Nam area and 5 groups in Kyong-Nam area. The result of this study in kyong-Nam area accords with prior result of study.

  • PDF

Chicken Disease Characterization by Fluorescence Spectroscopy

  • Kang S.;Kim M. S.;Kim I.
    • Agricultural and Biosystems Engineering
    • /
    • v.5 no.1
    • /
    • pp.25-29
    • /
    • 2004
  • Fluorescence spectroscopy was used to characterize chicken carcass diseases. Spectral signatures of three different disease categories of poultry carcasses (airsacculitis, cadaver and septicemia) were obtained from fluorescence emission measurements in the wavelength range of 360 to 600 nm with 330 nm excitation. Principal Component Analysis (PCA) was used to select the most significant wavelengths for the classification of poultry carcasses. These wavelengths were analyzed for pathologic correlation of poultry diseases. Using a Soft Independent Modeling of Class Analogy (SIMCA) of principal components with a Mahalanobis distance metric, poultry carcasses were individually classified into different classes with $97.9\%$ accuracy.

  • PDF

MPEG Video Retrieval Using U-Trees Construction (KD-Trees구조를 이용한MPEG 비디오 검색)

  • Kim, Daeil;Hong, Jong-Sun;Jang, Hye-Kyoung;Kim, Young-Ho;Kang, Dae-Seong
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.1855-1858
    • /
    • 2003
  • In this paper, we propose image retrieval method more accurate and efficient than the conventional one. First of ail, we perform a shot detection and key frame extraction from the DC image constructed by DCT DC coefficients in the compressed video stream that is video compression standard such as MPEG[I][2]. We get principal axis applying PCA(Principal Component Analysis) to key frames for obtaining indexing information, and divide a domain. Video retrieval uses indexing information of high dimension. We apply KD-Trees(K Dimensional-Trees)[3] which shows efficient retrieval in data set of high dimension to video retrieval method. The proposed method can represent property of images more efficiently and property of domains more accurately using KD-Trees.

  • PDF

Rapid discrimination system of Chinese cabbage (Brassica rapa) at metabolic level using Fourier transform infrared spectroscopy (FT-IR) based on multivariate analysis (배추 대사체 추출물의 FT-IR 스펙트럼 및 다변량 통계분석을 통한 계통 신속 식별 체계)

  • Ahn, Myung Suk;Lim, Chan Ju;Song, Seung Yeob;Min, Sung Ran;Lee, In Ho;Nou, Ill-Sup;Kim, Suk Weon
    • Journal of Plant Biotechnology
    • /
    • v.43 no.3
    • /
    • pp.383-390
    • /
    • 2016
  • To determine whether FT-IR spectral analysis based on multivariate analysis could be used to discriminate Chinese cabbage breeding line at metabolic level, whole cell extracts of nine different breeding lines (three paternal, three maternal and three $F_1$ lines) were subjected to Fourier transform infrared spectroscopy (FT-IR). FT-IR spectral data of Chinese cabbage plants were analyzed by principal component analysis (PCA), partial least square discriminant analysis (PLS-DA), and hierarchical clustering analysis (HCA). The hierarchical dendrograms based on PLS-DA from two of three cross combinations showed that paternal, maternal, and their progeny $F_1$ lines samples were perfectly separated into three branches in breeding line dependent manner. However, a cross combination failed to fully discriminate them into three branches. Thus, hierarchical dendrograms based on PLS-DA of FT-IR spectral data of Chinese cabbage breeding lines could be used to represent the most probable chemotaxonomical relationship among maternal, paternal, and $F_1$ plants. Furthermore, these metabolic discrimination systems could be applied for rapid selection and classification of useful Chinese cabbage cultivars.

Classification and discrimination of excel radial charts using the statistical shape analysis (통계적 형상분석을 이용한 엑셀 방사형 차트의 분류와 판별)

  • Seungeon Lee;Jun Hong Kim;Yeonseok Choi;Yong-Seok Choi
    • The Korean Journal of Applied Statistics
    • /
    • v.37 no.1
    • /
    • pp.73-86
    • /
    • 2024
  • A radial chart of Excel is very useful graphical method in delivering information for numerical data. However, it is not easy to discriminate or classify many individuals. In this case, after shaping each individual of a radial chart, we need to apply shape analysis. For a radial chart, since landmarks for shaping are formed as many as the number of variables representing the characteristics of the object, we consider a shape that connects them to a line. If the shape becomes complicated due to the large number of variables, it is difficult to easily grasp even if visualized using a radial chart. Principal component analysis (PCA) is performed on variables to create a visually effective shape. The classification table and classification rate are checked by applying the techniques of traditional discriminant analysis, support vector machine (SVM), and artificial neural network (ANN), before and after principal component analysis. In addition, the difference in discrimination between the two coordinates of generalized procrustes analysis (GPA) coordinates and Bookstein coordinates is compared. Bookstein coordinates are obtained by converting the position, rotation, and scale of the shape around the base landmarks, and show higher rate than GPA coordinates for the classification rate.

Perception and practice regarding allergen labeling: focus on food-related employees

  • Park, Si-Eun;Kwon, Yong-Seok;Paik, Jin-Kyoung;Kwak, Tong-Kyung;Hong, Wan-Soo
    • Nutrition Research and Practice
    • /
    • v.10 no.4
    • /
    • pp.424-432
    • /
    • 2016
  • BACKGROUND/OBJECTIVES: Most consumers are able to recognize allergenic foods. However, the frequency of checking such foods is reportedly low, resulting in higher prevalence of food-related allergic reactions in Korea compared to other countries. Thus, this study was performed to investigate the overall perception of allergenic food labeling and its practice level in food manufacturing company employees. SUBJECTS/METHODS: The survey was administered to food safety employees and food development teams at food companies located in metropolitan areas. A total of 399 (93.8%) valid samples were used in the final analysis. Statistical analyses, including Frequency Analysis, t-test, Anova, PCA (Principal Component Analysis), and Pearson Correlation Analysis using SPSS ver. 21.0, were performed. RESULTS: The correct answer rate in the analysis of allergy-related knowledge level ranged from 15.0% to 89.7%. Analysis of differences in allergy-related perception by knowledge level showed significant differences in introduction of a food recall system, strengthening of relevant laws and regulations, content labeling, description of substitutional food, and differentiated package by age. CONCLUSIONS: It can be concluded that labeling of allergenic foods should be made easier and more convenient for checking by employees, developers, and consumers, and it is necessary to provide contents through the development of publicity, guidelines, or APP along with labeling.

An Efficient Pedestrian Recognition Method based on PCA Reconstruction and HOG Feature Descriptor (PCA 복원과 HOG 특징 기술자 기반의 효율적인 보행자 인식 방법)

  • Kim, Cheol-Mun;Baek, Yeul-Min;Kim, Whoi-Yul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.10
    • /
    • pp.162-170
    • /
    • 2013
  • In recent years, the interests and needs of the Pedestrian Protection System (PPS), which is mounted on the vehicle for the purpose of traffic safety improvement is increasing. In this paper, we propose a pedestrian candidate window extraction and unit cell histogram based HOG descriptor calculation methods. At pedestrian detection candidate windows extraction stage, the bright ratio of pedestrian and its circumference region, vertical edge projection, edge factor, and PCA reconstruction image are used. Dalal's HOG requires pixel based histogram calculation by Gaussian weights and trilinear interpolation on overlapping blocks, But our method performs Gaussian down-weight and computes histogram on a per-cell basis, and then the histogram is combined with the adjacent cell, so our method can be calculated faster than Dalal's method. Our PCA reconstruction error based pedestrian detection candidate window extraction method efficiently classifies background based on the difference between pedestrian's head and shoulder area. The proposed method improves detection speed compared to the conventional HOG just using image without any prior information from camera calibration or depth map obtained from stereo cameras.

Real Time Face Detection and Recognition using Rectangular Feature Based Classifier and PCA-based MLNN (사각형 특징 기반 분류기와 PCA기반 MLNN을 이용한 실시간 얼굴검출 및 인식)

  • Kim, Jong-Min;Lee, Kee-Jun
    • Journal of Digital Contents Society
    • /
    • v.11 no.4
    • /
    • pp.417-424
    • /
    • 2010
  • In this paper the real-time face region was detected by suggesting the rectangular feature-based classifier and the robust detection algorithm that satisfied the efficiency of computation and detection performance was suggested. By using the detected face region as a recognition input image, in this paper the face recognition method combined with PCA and the multi-layer network which is one of the intelligent classification was suggested and its performance was evaluated. As a pre-processing algorithm of input face image, this method computes the eigenface through PCA and expresses the training images with it as a fundamental vector. Each image takes the set of weights for the fundamental vector as a feature vector and it reduces the dimension of image at the same time, and then the face recognition is performed by inputting the multi-layer neural network.

A Fast Method for Face Detection Based on PCA and SVM (PCA와 SVM에 기반하는 빠른 얼굴탐지 방법)

  • Xia, Chun-Lei;Shin, Hyeon-Gab;Park, Myeong-Chul;Ha, Seok-Wun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.6
    • /
    • pp.1129-1135
    • /
    • 2007
  • Human face detection technique plays an important role in computer vision area. It has lots of applications such as face recognition, video surveillance, human computer interface, face image database management, and querying image databases. In this paper, a fast face detection approach using Principal Component Analysis (PCA) and Support Vector Machines (SVM) is proposed based on the previous study on face detection technique. In the proposed detection system, firstly it filter the face potential area using statistical feature which is generated by analyzing the local histogram distribution the detection process is speeded up by eliminating most of the non-face area in this step. In the next step, PCA feature vectors are generated, and then detect whether there are faces present in the test image using SVM classifier. Finally, store the detection results and output the results on the test image. The test images in this paper are from CMU face database. The face and non-face samples are selected from the MIT data set. The experimental results indicate the proposed method has good performance for face detection.

Principal Component Analysis on the Theory of Corporate Cash Holdings for Korean Chaebol Firms (주성분분석을 활용한 국내 재벌계열사들의 재무적 현금보유이론에 대한 검정)

  • Kim, Hanjoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.255-263
    • /
    • 2016
  • This study conducted empirical tests on contemporary finance theories for corporate cash holdings, such as trade-off, pecking order, and agency theory. There is ongoing debate on the possibility of excess cash savings by domestic firms, including chaebols in the Korean capital markets. Thus, it may be worthy to identify any financial characteristics based on each aforementioned theory as an extension of previous studies on similar subjects. Two primary hypotheses were postulated and tested, and the following empirical results were obtained. First, principal component analysis (PCA) provides evidence that nine out of the twenty explanatory variables showed a significant influence on the level of corporate cash holdings, such as cash conversion cycle in trade-off theory and leverage in pecking order theory. Second, the chaebol firms that decreased cash holdings after global financial turmoil may be affected by financial factors that include investment opportunities and foreign ownership according to the PCA. The results may reinforce the outcomes derived from previous research on corporate cash holdings. Based on the robust results, large firms in advanced or emerging capital markets could approach the optimal level of the cash reserves.