• Title/Summary/Keyword: P-P bonding

Search Result 887, Processing Time 0.023 seconds

MICROLEAKAGE OF CLASS V COMPOMER RESTORATIONS (5급 와동의 수복에 있어서 수종의 compomer의 미세 변연 누출에 관한 연구)

  • Yoo, Hyeon-Mee;Park, Dong-Sung;Oh, Tae-Seok
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.1
    • /
    • pp.41-45
    • /
    • 2000
  • The purpose of this study was to evaluate the microleakage of compomers. In this in vitro study, class V cavities were prepared on buccal and lingual surfaces of thirty extracted human premolars and molars on cementum cervical margin. The experimental teeth were randomly divided into five groups of six samples (12 surfaces) each, Group 1 : Dyract AP, Group 2 : F2000 compomer(non-etch), Group 3 : F2000 compomer(etch), Group 4 : Elan, Group 5 : Compoglass. The bonding agents and compomer were applied for each group following the manufacturer's instructions. After 500 thermocycling between $5^{\circ}C$ and $55^{\circ}C$, the 30 teeth were placed 1% methylene blue dye for 24 hours then rinsed with tab water. The specimens were embedded in clear resin, then sectioned buccolingually through the center of the restoration with a low speed diamond saw. The dye penetration on each of the specimen was observed with a stereomicroscope. The results of study were statistically analyzed using the Student-Newmann-Kaul' s Test. The results were obtained as follows. 1. All compomer restoration systems did not completely prevent marginal leakage. 2. In enamel margin, F2000 compomer(etch) group showed lower leakage value than other systems. Elan and Compoglass groups showed lower leakage value than Dyract AP and F2000 compomer(non-etch) groups (p<0.05). 3. In cementum margin, F2000 compomer(etch) and F2000 compomer (non-etch) groups showed lower leakage value than other systems. Dyract AP and Elan groups showed lower leakage value than Compoglass group (p<0.05).

  • PDF

Flexural strength and microstructure of two lithium disilicate glass ceramics for CAD/CAM restoration in the dental clinic

  • Kang, Suk-Ho;Chang, Juhea;Son, Ho-Hyun
    • Restorative Dentistry and Endodontics
    • /
    • v.38 no.3
    • /
    • pp.134-140
    • /
    • 2013
  • Objectives: There has been a growing interest in glass ceramic systems with good esthetics, high fracture resistance and bonding durability, and simplified fabrication techniques using CAD/CAM. The aim of this study is to compare flexural strength before and after heat treatment of two lithium disilicate CAD/CAM blocks, IPS e.max CAD (Ivoclar Vivadent) and Rosetta SM (Hass), and to observe their crystalline structures. Materials and Methods: Biaxial flexural strength was tested according to ISO 6872 with 20 disc form specimens sliced from each block before and after heat treatment. Also, the crystalline structures were observed using field-emission scanning microscopy (FE-SEM, Hitachi) and x-ray diffraction (XRD, Rigaku) analysis. The mean values of the biaxial flexural strength were analyzed by the Mann-Whitney U test at a significance level of p = 0.05. Results: There were no statistically significant differences in flexural strength between IPS e.max CAD and Rosetta SM either before heat treatment or after heat treatment. For both ceramics, the initial flexural strength greatly increased after heat treatment, with significant differences (p < 0.05). The FE-SEM images presented similar patterns of crystalline structure in the two ceramics. In the XRD analysis, they also had similar patterns, presenting high peak positions corresponding to the standard lithium metasilicate and lithium disilicate at each stage of heat treatment. Conclusions: IPS e.max CAD and Rosetta SM showed no significant differences in flexural strength. They had a similar crystalline pattern and molecular composition.

Thermodynamic Comparison of Silicon Carbide CVD Process between CH3SiCl3-H2 and C3H8-SiCl4-H2 Systems (탄화규소 CVD 공정에서 CH3SiCl3-H2과 C3H8-SiCl4-H2계의 열역학적 비교)

  • Choi, Kyoon;Kim, Jun-Woo
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.8
    • /
    • pp.569-573
    • /
    • 2012
  • In order to understand the difference in SiC deposition between the $CH_3SiCl_3-H_2$ and $C_3H_8-SiCl_4-H_2$ systems, we calculate the phase stability among ${\beta}$-SiC, graphite and silicon. We constructed the phase-diagram of ${\beta}$-SiC over graphite and silicon via computational thermodynamic calculation considering pressure (P), temperature (T) and gas composition (C) as variables. Both P-T-C diagrams showed a very steep phase boundary between the SiC+C and SiC region perpendicular to the H/Si axis, and also showed an SiC+Si region with a H/Si value of up to 6700 in the $C_3H_8-SiCl_4-H_2$, and 5000 in the $CH_3SiCl_3-H_2$ system. This difference in phase boundaries is explained by the ratio of Cl to Si, which is 4 for the $C_3H_8-SiCl_4-H_2$ system and 3 for the $C_3H_8-SiCl_4-H_2$ system. Because the C/Si ratio is fixed at 1 in the $CH_3SiCl_3-H_2$ system while it can be variable in the $C_3H_8-SiCl_4-H_2$ system, the functionally graded material is applicable for better mechanical bonding during SiC coating on graphite substrate in the $C_3H_8-SiCl_4-H_2$ system.

Characteristics of Organic Solar Cell having an Electron Transport Layer co-Deposited with ZnO Metal Oxide and Graphene using the Cyclic Voltammetry Method (순환전류법을 이용해 ZnO 금속산화물과 Graphene을 동시에 제막한 전자수송층을 갖는 유기태양전지의 특성)

  • Ahn, Joonsub;Han, Eunmi
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.1
    • /
    • pp.71-75
    • /
    • 2022
  • Graphene oxide was stirred with a ZnCl2:NaCl electrolyte and electrochemically coated by cyclic voltammetry to simplify the electron transpfer layer film forming process for organic solar cells and to fabricate an organic solar cell having it. The device structure is FTO/ZnO:graphene/P3HT:PCBM/PEDOT:PSS/Ag. Morphology and chemical properties of ETL were confirmed by scanning electron microscopy(SEM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. As a result of XPS measurement, ZnO metal oxide and carbon bonding were simultaneously confirmed, and ZnO and graphene peaks were confirmed by Raman spectroscopy. The electrical characteristics of the manufactured solar cell were specified with a solar simulator, and the ETL device coated twice at a rate of 0.05 V/s showed the highest photoelectric conversion efficiency of 1.94%.

Comparative evaluation of shear bond strength of orthodontic brackets bonded to three-dimensionally-printed and milled materials after surface treatment and artificial aging

  • Ameer Biadsee;Ofir Rosner;Carol Khalil;Vanina Atanasova;Joel Blushtein;Shifra Levartovsky
    • The korean journal of orthodontics
    • /
    • v.53 no.1
    • /
    • pp.45-53
    • /
    • 2023
  • Objective: This study aimed to evaluate the shear bond strength (SBS) of orthodontic brackets bonded to three-dimensionally (3D)-printed materials after various surface treatments and artificial aging compared with that bonded to computer-aided design/computer-aided manufacturing (CAD-CAM) polymethyl methacrylate (PMMA)-milled materials. Methods: Eighty cylindrical specimens were 3D printed and divided into the following four subgroups (n = 20 each) according to the surface treatment and artificial aging procedure. Group A, sandblasted with 50 ㎛ aluminum oxide particles (SA) and aging; group B, sandblasted with 30 ㎛ silica-coated alumina particles (CO) and aging; group C, SA without aging; and group D, CO without aging. For the control group, 20 CAD-CAM PMMA-milled cylindrical specimens were sandblasted with SA and aged. The SBS was measured using a universal testing machine (0.25 mm/min), examined at ×2.5 magnification for failure mode classification, and statistically analyzed (p = 0.05). Results: The retention obtained with the 3D-printed materials (groups A-D) was higher than that obtained with the PMMA-milled materials (control group). However, no significant difference was found between the study and control groups, except for group C (SA without aging), which showed significantly higher retention than the control group (PMMA-SA and thermocycling) (p = 0.037). Study groups A-D predominantly exhibited a cohesive specimen mode, indicating specimen fracture. Conclusions: Orthodontic brackets bonded to 3D-printed materials exhibit acceptable bonding strengths. However, 3D-printed materials are prone to cohesive failure, which may result in crown fractures.

Effect of Different Conditions of Sodium Chloride Treatment on the Characteristics of Kenaf Fiber-Epoxy Composite Board

  • SETYAYUNITA, Tamaryska;WIDYORINI, Ragil;MARSOEM, Sri Nugroho;IRAWATI, Denny
    • Journal of the Korean Wood Science and Technology
    • /
    • v.50 no.2
    • /
    • pp.93-103
    • /
    • 2022
  • Currently, biofibers are used as a reinforcement in polymer composites for structural elements and construction materials instead of the synthetic fibers which cause environmental problems and are expensive. One of the chemicals with a pH close to neutral that can be potentially used as a modified fiber material is sodium chloride (NaCl). Therefore, this study aims to investigate the characteristics of a composite board made from NaCl-treated kenaf fiber. A completely randomized design method was used with consideration of two factors: the content of NaCl in the treatment solution (1 wt%, 3 wt%, and 5 wt%) and the duration of immersion of fibers in the solution (1 h, 2 h, and 3 h). The NaCl treatment was conducted by soaking the fibers in the solution for different durations. The fibers were then rinsed with water until the pH of the water reached 7 and subsequently dried inside an oven at 80℃ for 6 h. Kenaf fiber and epoxy were mixed manually with the total loading of 20 wt% based on the dry weight of the fiber. Physical and mechanical properties of the fibers were then evaluated based on JIS A 5908 particleboard standards. The results showed that increasing NaCl content in the fiber treatment solution can increase the physical and mechanical properties of the composite board. The properties of fibers treated with 5 wt% NaCl for 3 h were superior with a modulus of elasticity of 2.085 GPa, modulus of rupture of 19.77 MPa, internal bonding of 1.8 MPa, thickness swelling of 3%, and water absorption of 10.9%. The contact angle of untreated kenaf fibers was 104°, which increased to 80° and 73° on treatment with 1 wt% and 5 wt% NaCl for 3 h, respectively.

Effects of dentin surface preparations on bonding of self-etching adhesives under simulated pulpal pressure

  • Chantima Siriporananon;Pisol Senawongse;Vanthana Sattabanasuk;Natchalee Srimaneekarn;Hidehiko Sano;Pipop Saikaew
    • Restorative Dentistry and Endodontics
    • /
    • v.47 no.1
    • /
    • pp.4.1-4.13
    • /
    • 2022
  • Objectives: This study evaluated the effects of different smear layer preparations on the dentin permeability and microtensile bond strength (µTBS) of 2 self-etching adhesives (Clearfil SE Bond [CSE] and Clearfil Tri-S Bond Universal [CTS]) under dynamic pulpal pressure. Materials and Methods: Human third molars were cut into crown segments. The dentin surfaces were prepared using 4 armamentaria: 600-grit SiC paper, coarse diamond burs, superfine diamond burs, and carbide burs. The pulp chamber of each crown segment was connected to a dynamic intra-pulpal pressure simulation apparatus, and the permeability test was done under a pressure of 15 cmH2O. The relative permeability (%P) was evaluated on the smear layer-covered and bonded dentin surfaces. The teeth were bonded to either of the adhesives under pulpal pressure simulation, and cut into sticks after 24 hours water storage for the µTBS test. The resin-dentin interface and nanoleakage observations were performed using a scanning electron microscope. Statistical comparisons were done using analysis of variance and post hoc tests. Results: Only the method of surface preparation had a significant effect on permeability (p < 0.05). The smear layers created by the carbide and superfine diamond burs yielded the lowest permeability. CSE demonstrated a higher µTBS, with these values in the superfine diamond and carbide bur groups being the highest. Microscopic evaluation of the resin-dentin interface revealed nanoleakage in the coarse diamond bur and SiC paper groups for both adhesives. Conclusions: Superfine diamond and carbide burs can be recommended for dentin preparation with the use of 2-step CSE.

Interaction of Proline with Cu+ and Cu2+ Ions in the Gas Phase (기체상에서 Cu+ 및 Cu2+ 이온과 proline의 상호작용)

  • Lee, Gab-Yong
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.3
    • /
    • pp.257-265
    • /
    • 2009
  • The structures and metal affinities of the binding configurations of $Cu^{+}$ and $Cu^{2+}$ to proline have been investigated using the hybrid three-parameter Density Functional Theory(DFT/B3LYP). We found that the metal-proline bonding and the energy ordering of several conformers were very different in $Cu^{+}$-proline and $Cu^{2+}$-proline. For $Cu^{+}$-proline, the ground state structure was found to have a bidentated coordination in which $Cu^{+}$ was coordinated to the carbonyl oxygen and imino group nitrogen of neutral proline. On the contrary, the ground state structure of $Cu^{2+}$-proline involves chelation between the two oxygens of the carboxylate group in a zwitterionic proline. The metal ion affinity of proline of the most stable $Cu^{+}$-proline complex was calculated as 76.0 kcal/mol at 6-311++G(d,p) level, whereas the $Cu^{2+}$ ion affinity of proline was calculated as 258.5 kcal/mol.

Investigation of the behavior of an RC beam strengthened by external bonding of a porous P-FGM and E-FGM plate in terms of interface stresses

  • Zahira Sadoun;Riadh Bennai;Mokhtar Nebab;Mouloud Dahmane;Hassen Ait Atmane
    • Structural Monitoring and Maintenance
    • /
    • v.10 no.4
    • /
    • pp.315-337
    • /
    • 2023
  • During the design phase, it is crucial to determine the interface stresses between the reinforcing plate and the concrete base in order to predict plate end separation failures. In this work, a simple theoretical study of interface shear stresses in beams reinforced with P-FGM and E-FGM plates subjected to an arbitrarily positioned point load, or two symmetrical point loads, was presented using the linear elastic theory. The presence of pores in the reinforcing plate distributed in several forms was also taken into account. For this purpose, we analyze the effects of porosity and its distribution shape on the interracial normal and shear stresses of an FGM beam reinforced with an FRP plate under different types of load. Comparisons of the proposed model with existing analytical solutions in the literature confirm the feasibility and accuracy of this new approach. The influence of different parameters on the interfacial behavior of reinforced concrete beams reinforced with functionally graded porous plates is further examined in this parametric study using the proposed model. From the results obtained in this study, we can say that interface stress is significantly affected by several factors, including the pores present in the reinforcing plate and their distribution shape. Additionally, we can conclude from this study that reinforcement systems with composite plates are very effective in improving the flexural response of reinforced RC beams.

An effect of Dentin Bonding Procedure on the Shear Bond Strength of Resin Cement to Porcelain Restoration (도재 수복물 합착시 상아질 접착 술식이 레진 시멘트의 전단결합강도에 미치는 영향)

  • Kang, Hae-Jin;Shin, Soo-Yeon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.28 no.1
    • /
    • pp.67-78
    • /
    • 2012
  • The purpose of this study was to determine whether there were differences in shear bond strength to human dentin using IDS technique compared with DDS. Forty freshly extracted human molars were and devided into 4 groups. The control group specimens were, on the morrow of tooth preparation, light-cured after application of dentin bonding agent and cemented with resin cement. The IDS/SE(immediate dentin sealing, Clearfil$^{TM}$ SE Bond) and IDS/SB (immediate dentin sealing, Adapter$^{TM}$ Single Bond 2) specimens were, on the morrow of tooth preparation, light-cured after application of dentin bonding agent(Clearfil$^{TM}$ SE Bond and Adapter$^{TM}$ Sing Bond 2, respectively), whereas DDS specimens were not treated with any dentin bonding agent. IDS/SE, IDS/SB and DDS specimens were thermocycled. Following that delay, specimens were cemented with resin cement. The dentin bonding agent was left unpolymerized until the application of porcelain restoration. Shear bond strengths were measured using a universal testing machine. Specimens also were evaluated for mode of fracture using an optical microscope. The mean shear bond strengths of control group and IDS/SE groups were not statistically different from one another. The bond strength of IDS/SE group had a significantly higher mean than that of DDS group. There was no significant difference in the mean shear bond strength between IDS/SB(4.11MPa) and DDS group. The evaluation of failure modes indicates that most failures in the control group and IDS/SE groups were mixed, whereas failures in the DDS group were interfacial. When preparing teeth for indirect ceramic restoration, IDS with Clearfil$^{TM}$ SE Bond results in improved shear bond strength compared with DDS.