DOI QR코드

DOI QR Code

Investigation of the behavior of an RC beam strengthened by external bonding of a porous P-FGM and E-FGM plate in terms of interface stresses

  • Zahira Sadoun (Department of Civil Engineering, Faculty of Civil Engineering and Architecture, University Hassiba Benbouali of Chlef) ;
  • Riadh Bennai (Department of Civil Engineering, Faculty of Civil Engineering and Architecture, University Hassiba Benbouali of Chlef) ;
  • Mokhtar Nebab (Laboratory of Structures, Geotechnics and Risks, Department of Civil Engineering, Hassiba Benbouali University of Chlef) ;
  • Mouloud Dahmane (Department of planning and hydraulic engineering, Higher National School of Hydraulics) ;
  • Hassen Ait Atmane (Department of Civil Engineering, Faculty of Civil Engineering and Architecture, University Hassiba Benbouali of Chlef)
  • Received : 2023.11.05
  • Accepted : 2023.12.18
  • Published : 2023.12.25

Abstract

During the design phase, it is crucial to determine the interface stresses between the reinforcing plate and the concrete base in order to predict plate end separation failures. In this work, a simple theoretical study of interface shear stresses in beams reinforced with P-FGM and E-FGM plates subjected to an arbitrarily positioned point load, or two symmetrical point loads, was presented using the linear elastic theory. The presence of pores in the reinforcing plate distributed in several forms was also taken into account. For this purpose, we analyze the effects of porosity and its distribution shape on the interracial normal and shear stresses of an FGM beam reinforced with an FRP plate under different types of load. Comparisons of the proposed model with existing analytical solutions in the literature confirm the feasibility and accuracy of this new approach. The influence of different parameters on the interfacial behavior of reinforced concrete beams reinforced with functionally graded porous plates is further examined in this parametric study using the proposed model. From the results obtained in this study, we can say that interface stress is significantly affected by several factors, including the pores present in the reinforcing plate and their distribution shape. Additionally, we can conclude from this study that reinforcement systems with composite plates are very effective in improving the flexural response of reinforced RC beams.

Keywords

References

  1. Abderezak, R., Daouadji, T.H. and Rabia, B. (2021), "Modeling and analysis of the imperfect FGM-damaged RC hybrid beams", Adv. Comput. Design, 6(2), 117-133. https://doi.org/10.12989/acd.2021.6.2.117.
  2. Ait Atmane, R., Mahmoudi, N. and Bennai, R. (2021), "Investigation on the dynamic response of porous FGM beams resting on variable foundation using a new higher order shear deformation theory", Steel Compos. Struct., 39(1), 95-107. https://doi.org/10.12989/scs.2021.39.1.095.
  3. Ameur, M., Tounsi, A., Benyoucef, S., Bachir Bouiadjra, M. and Adda Bedia, E. (2009), "Stress analysis of steel beams strengthened with a bonded hygrothermal aged composite plate", Int. J. Mech. Mater. Design, 5, 143-156. https://doi.org/10.1007/s10999-008-9090-2.
  4. Al-Bukhaiti, K., Yanhui, L., Shichun, Z. and Daguang, H. (2024), "Based on BP neural network: Prediction of interface bond strength between CFRP layers and reinforced concrete", Practice Periodical on Structural Design and Construction, 29(2), 04023067. https://doi.org/10.1061/PPSCFX.SCENG-142.
  5. Aslam, M., Shafigh, P., Jumaat, M.Z. and Shah, S. (2015), "Strengthening of RC beams using prestressed fiber reinforced polymers-A review", Constr. Build. Materi., 82, 235-256. https://doi.org/10.1016/j.conbuildmat.2015.02.051.
  6. Ayache, B., Bennai, R., Fahsi, B., Fourn, H., Atmane, H.A. and Tounsi, A. (2018), "Analysis of wave propagation and free vibration of functionally graded porous material beam with a novel four variable refined theory", Earthq. Struct.. 15(4), 369-382. https://doi.org/10.12989/eas.2018.15.4.369.
  7. Bai, Y.L., Niu, W.Q., Xie, W.J. and Gao, W.Y. (2024), "Flexural behavior of reinforced concrete beams strengthened with hybrid carbon FRP laminates", Constr. Build. Mater., 411, 2024, 134372. https://doi.org/10.1016/j.conbuildmat.2023.134372.
  8. Benachour, A., Benyoucef, S. and Tounsi, A. (2008), "Interfacial stress analysis of steel beams reinforced with bonded prestressed FRP plate", Eng. Struct., 30(11), 3305-3315. https://doi.org/10.1016/j.engstruct.2008.05.007.
  9. Bennai, R., Atmane, H.A., Ayache, B., Tounsi, A., Bedia, E.A. and Al-Osta, M. (2019), "Free vibration response of functionally graded Porous plates using a higher-order Shear and normal deformation theory", Earthq. Struct., 16(5), 547-561. https://doi.org/10.12989/eas.2019.16.5.547.
  10. Bennai, R., Fourn, H., Atmane, H.A., Tounsi, A. and Bessaim, A. (2019), "Dynamic and wave propagation investigation of FGM plates with porosities using a four variable plate theory", Wind Struct., 28(1), 49-62. https://doi.org/10.12989/was.2019.28.1.049.
  11. Bennai, R., Atmane, R. A., Bernard, F., Nebab, M., Mahmoudi, N., Atmane, H.A. and Tounsi, A. (2022), "Study on stability and free vibration behavior of porous FGM beams", Steel Compos. Struct., 45(1), 67-82. https://doi.org/10.12989/scs.2022.45.1.067.
  12. Benyoucef, S., Tounsi, A., Yeghnem, R., Bachir Bouiadjra, M. and Adda Bedia, E. (2014), "An analysis of interfacial stresses in steel beams bonded with a thin composite plate under thermomechanical loading", Mech. Compos. Mater., 49, 641-650. https://doi.org/10.1007/s11029-013-9380-0.
  13. Berradia, M., Azab, M., Ahmad, Z., Accouche, O., Raza, A. and Alashker, Y. (2022), "Data-driven prediction of compressive strength of FRP-confined concrete members: An application of machine learning models", Struct. Eng. Mech., 83(4), 515-535. https://doi.org/10.12989/sem.2022.83.4.515.
  14. Bouakaz, K., Daouadji, T.H., Meftah, S., Ameur, M., Tounsi, A. and Bedia, E.A. (2014), "A numerical analysis of steel beams strengthened with composite materials", Mech. Compos. Mater., 50, 491-500. https://doi.org/10.1007/s11029-014-9435-x.
  15. Bouchikhi, A., Megueni, A., Gouasmi, S. and Boukoulda, F. (2013), "Effect of mixed adhesive joints and tapered plate on stresses in retrofitted beams bonded with a fiber-reinforced polymer plate", Mater. Design, 50, 893-904. https://doi.org/10.1016/j.matdes.2013.03.052.
  16. Daouadji, H.T., Benyoucef, S., Tounsi, A., Benrahou, K. and Bedia, A.E. (2008), "Interfacial stress concentrations in FRP-damaged RC hybrid beams", Compos. Interfaces, 15(4), 425-440. https://doi.org/10.1163/156855408784514702
  17. Daouadji, T.H. (2013), "Analytical analysis of the interfacial stress in damaged reinforced concrete beams strengthened by bonded composite plates", Strength of Materials. 45(5), 587-597. https://doi.org/10.1007/s11223-013-9496-4.
  18. Daouadji, T.H., Chedad, A. and Adim, B. (2016), "Interfacial stresses in RC beam bonded with a functionally graded material plate", Struct. Eng. Mech., 60(4), 693-705. https://doi.org/10.12989/sem.2016.60.4.693.
  19. Daouadji, T.H., Rabahi, A., Abbes, B. and Adim, B. (2016), "Theoretical and finite element studies of interfacial stresses in reinforced concrete beams strengthened by externally FRP laminates plate", J. Adhesion Sci. Technol., 30(12), 1253-1280. https://doi.org/10.1080/01694243.2016.1140703.
  20. Du, Y.X., Hou, C.X., Xu, B. and Zhou, F. (2016), "Effect of shear deformation on interfacial stress of fiber-reinforced polymer plate-strengthened reinforced concrete beams", Adv. Struct. Eng.. 19(10), 1592-1603. https://doi.org/10.1177/1369433216645990.
  21. Du, Y., Liu, Y. and Zhou, F. (2019), "An improved four-parameter model on stress analysis of adhesive layer in plated beam", Int. J. Adhesion Adhesives, 91, 1-11. https://doi.org/10.1016/j.ijadhadh.2019.02.005.
  22. Fahsi, B., Benrahou, K.H., Krour, B., Tounsi, A., Benyoucef, S. and Adda Bedia, E.A. (2011), "Analytical analysis of interfacial stresses in FRP-RC hybrid beams with time-dependent deformations of RC beam", Acta Mechanica Solida Sinica, 24(6), 519-526. https://doi.org/10.1016/S0894-9166(11)60052-9.
  23. Farouk, M.A., Moubarak, A.M.R. and Ibrahim, A. (2023), "New alternative techniques for strengthening deep beams with circular and rectangular openings", Case Studies Constr. Mater., 19, e02288, https://doi.org/10.1016/j.cscm.2023.e02288.
  24. Guenaneche, B. and Tounsi, A. (2014), "Effect of shear deformation on interfacial stress analysis in plated beams under arbitrary loading", Int. J. Adhesion Adhesives, 48, 1-13. https://doi.org/10.1016/j.ijadhadh.2013.09.016.
  25. Gupta, A. and Talha, M. (2017), "Influence of porosity on the flexural and vibration response of gradient plate using nonpolynomial higher-order shear and normal deformation theory", Int. J. Mech. Mater. Design, 14(2), 277-296. https://doi.org/10.1007/s10999-017-9369-2.
  26. Hamoda, A.A., Eltaly, B.A., Ghalla, M. and Liang, Q.Q. (2023), "Behavior of reinforced concrete ring beams strengthened with sustainable materials", Eng. Struct., 290, 116374. https://doi.org/10.1016/j.engstruct.2023.116374.
  27. He, X., Zhou, C., Lv, M., Wang, Y. and Liu, Y. (2023), " Interfacial stresses of beams hybrid strengthened by steel plate with outside taper and FRP pocket", J. Build. Eng., 107034. https://doi.org/10.1016/j.jobe.2023.107034.
  28. Kim, E.J., Lee, C.M. and Kim, D.H. (2023), "Study on the characteristics of functionally graded materials from Ni-20cr to Ti-6Al-4V via directed energy deposition", J. Alloys Compounds, 955 170263. https://doi.org/10.1016/j.jallcom.2023.170263.
  29. Krour, B., Bernard, F. and Tounsi, A. (2013), "Fibers orientation optimization for concrete beam strengthened with a CFRP bonded plate: A coupled analytical-numerical investigation", Eng. Struct., 56, 218-227. https://doi.org/10.1016/j.engstruct.2013.05.008.
  30. Liu, M. and Dawood, M. (2018), "A closed-form solution of the interfacial stresses and strains in steel beams strengthened with externally bonded plates using ductile adhesives", Eng. Struct., 154, 66-77. https://doi.org/10.1016/j.engstruct.2017.10.054.
  31. Long, H., Wei, Y. and Liang, L. (2020), "A rigorous analytical solution of interfacial stresses and overall stiffness of beam structures bonded with partially covered plates", Int. J. Mech. Sci., 167, 105284. https://doi.org/10.1016/j.ijmecsci.2019.105284.
  32. Mellal, F., Bennai, R., Nebab, M., Atmane, H.A., Bourada, F., Hussain, M. and Tounsi, A. (2021), "Investigation on the effect of porosity on wave propagation in FGM plates resting on elastic foundations via a quasi-3D HSDT", Waves Random Complex Media, 1-27. https://doi.org/10.1080/17455030.2021.1983235.
  33. Mellal, F., Bennai, R., Avcar, M., Nebab, M. and Atmane, H.A. (2023), "On the vibration and buckling behaviors of porous FG beams resting on variable elastic foundation utilizing higher-order shear deformation theory", Acta Mech., 234, 3955-3977. https://doi.org/10.1007/s00707-023-03603-5.
  34. Mohamed, B.B., Abdelouahed, T., Samir, B. and El Abbas, A.B. (2009), "Approximate analysis of adhesive stresses in the adhesive layer of plated RC beams", Comput. Mater. Sci., 46(1), 15-20. https://doi.org/10.1016/j.commatsci.2009.01.020.
  35. Nebab, M., Atmane, H.A., Bennai, R., Tounsi, A. and Bedia, E.A. (2019), "Vibration response and wave propagation in FG plates resting on elastic foundations using HSDT", Struct. Eng. Mech., 69(5), 511-525. https://doi.org/10.12989/sem.2019.69.5.511.
  36. Rabahi, A., Benferhat, R., Daouadji, T.H., Abbes, B., Belkacem, A. and Abbes, F. (2018), "Elastic analysis of interfacial stresses in prestressed PFGM-RC hybrid beams", Adv. Mater. Res., 7(2), 83. https://doi.org/10.12989/amr.2018.7.2.083.
  37. Rabahi, A., Daouadji, T.H., Abbes, B. and Adim, B. (2016), "Analytical and numerical solution of the interfacial stress in reinforced-concrete beams reinforced with bonded prestressed composite plate", J. Reinforc. Plast. Compos., 35(3), 258-272. https://doi.org/10.1177/0731684415613633.
  38. Rabia, B., Abderezak, R., Daouadji, T.H., Abbes, B., Belkacem, A. and Abbes, F. (2018), "Analytical analysis of the interfacial shear stress in RC beams strengthened with prestressed exponentially-varying properties plate", Adv. Mater. Res., 7(1), 29-44. https://doi.org/10.12989/amr.2018.7.1.029.
  39. Rabia, B., Daouadji, T.H. and Abderezak, R. (2020), "Predictions of the maximum plate end stresses of imperfect FRP strengthened RC beams: study and analysis", Adv. Mater. Res., 9(4), 265-287. https://doi.org/10.12989/amr.2020.9.4.265.
  40. Raza, A., Alomayri, T. and Berradia, M. (2022), "Rapid repair of partially damaged GFRP-reinforced recycled aggregate concrete columns using FRP composites", Mech. Adv. Mater. Struct., 29(27), 6070-6086. https://doi.org/10.1080/15376494.2021.1972368.
  41. Sami, A., Khan, Q.Z., Azam, A., Raza, A. and Berradia, M. (2022), "Performance of repaired macro-synthetic structural fibers and glass-FRP-reinforced concrete columns", Iran. J. Sci. Technol. Trans. Civil Eng., 1-12. https://doi.org/10.1007/s40996022-00966-y.
  42. Sha, X. and Davidson, J.S. (2020), "Analysis of interfacial stresses in concrete beams strengthened by externally bonded FRP laminates using composite beam theory", Compos. Struct., 243, 112235. https://doi.org/10.1016/j.compstruct.2020.112235.
  43. Shan, Z. and Su, R. (2020), "Improved uncoupled closed-form solution for adhesive stresses in plated beams based on Timoshenko beam theory", Int. J. Adhesion Adhesives, 96, 102472. https://doi.org/10.1016/j.ijadhadh.2019.102472.
  44. Smith, S.T. and Teng, J. (2001), "Interfacial stresses in plated beams", Eng. Struct., 23(7), 857-871. https://doi.org/10.1016/S0141-0296(00)00090-0.
  45. Teng, J., Zhang, J. and Smith, S.T. (2002), "Interfacial stresses in reinforced concrete beams bonded with a soffit plate: a finite element study", Constr. Build. Mater., 16(1), 1-14. https://doi.org/10.1016/S0950-0618(01)00029-0.
  46. Tounsi, A. (2006), "Improved theoretical solution for interfacial stresses in concrete beams strengthened with FRP plate", Int. J. Solids Struct., 43(14-15), 4154-4174. https://doi.org/10.1016/j.ijsolstr.2005.03.074.
  47. Tounsi, A. and Benyoucef, S. (2007), "Interfacial stresses in externally FRP-plated concrete beams", Int. J. Adhesion Adhesives, 27(3), 207-215. https://doi.org/10.1016/j.ijadhadh.2006.01.009.
  48. Van Pham, P. (2021), "Solutions of the interfacial shear and normal stresses in plate flexural-strengthened beams based on different complementary strain energy assumptions", Eng. Struct., 229, 111567. https://doi.org/10.1016/j.engstruct.2020.111567.
  49. Wang, Y.Q., Wan, Y.H. and Zhang, Y.F. (2017), "Vibrations of longitudinally traveling functionally graded material plates with porosities", Eur. J. Mech. - A/Solids. 66, 55-68. https://doi.org/10.1016/j.euromechsol.2017.06.006.
  50. Wattanasakulpong, N. and Ungbhakorn, V. (2014), "Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities", Aerosp. Sci. Technol., 32(1), 111-120. https://doi.org/10.1016/j.ast.2013.12.002.
  51. Yang, J., Chen, J.F. and Teng, J. (2009), "Interfacial stress analysis of plated beams under symmetric mechanical and thermal loading", Constr. Build. Mater., 23(9), 2973-2987. https://doi.org/10.1016/j.conbuildmat.2009.05.004.
  52. Zhang, E., Zhang, J., Chen, B., Liu, C. and Zhan, Y. (2023), "Finite element analysis of laser ultrasonic in functionally graded material", Appl. Acoustics, 204, 109243. https://doi.org/10.1016/j.apacoust.2023.109243.
  53. Zhang, L. and Teng, J. (2010), "Finite element prediction of interfacial stresses in structural members bonded with a thin plate", Eng. Struct., 32(2), 459-471. https://doi.org/10.1016/j.engstruct.2009.10.008.