DOI QR코드

DOI QR Code

Characteristics of Organic Solar Cell having an Electron Transport Layer co-Deposited with ZnO Metal Oxide and Graphene using the Cyclic Voltammetry Method

순환전류법을 이용해 ZnO 금속산화물과 Graphene을 동시에 제막한 전자수송층을 갖는 유기태양전지의 특성

  • Ahn, Joonsub (Energy Convergence Core-Facility, Chonnam National University) ;
  • Han, Eunmi (School of Chemical Engineer, Chonnam National University)
  • 안준섭 (전남대학교 에너지융복합 전문 핵심연구지원센터) ;
  • 한은미 (전남대학교 화학공학부)
  • Received : 2022.03.23
  • Accepted : 2022.03.30
  • Published : 2022.03.30

Abstract

Graphene oxide was stirred with a ZnCl2:NaCl electrolyte and electrochemically coated by cyclic voltammetry to simplify the electron transpfer layer film forming process for organic solar cells and to fabricate an organic solar cell having it. The device structure is FTO/ZnO:graphene/P3HT:PCBM/PEDOT:PSS/Ag. Morphology and chemical properties of ETL were confirmed by scanning electron microscopy(SEM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. As a result of XPS measurement, ZnO metal oxide and carbon bonding were simultaneously confirmed, and ZnO and graphene peaks were confirmed by Raman spectroscopy. The electrical characteristics of the manufactured solar cell were specified with a solar simulator, and the ETL device coated twice at a rate of 0.05 V/s showed the highest photoelectric conversion efficiency of 1.94%.

Graphene oxide를 ZnCl2:NaCl 전해질과 함께 교반한 후 순환 전압전류법에 의해 전기화학적으로 제막하여 유기태양전지용 전자수송층 제막과정을 단순화하고 이를 갖는 유기태양전지를 제작하였다. 소자의 구조는 FTO/ZnO:graphene 전자수송층/P3HT:PCBM 광활성층/PEDOT:PSS 정공수송층/Ag이다. ETL의 형태 및 화학적 특성은 주사전자현미경(scanning electron microscopy, SEM), X선 광전자 분광법(X-ray photoelectron spectroscopy, XPS), 라만 분광법으로 확인하였다. XPS 측정결과 ZnO 금속산화물 및 탄소결합이 동시에 확인되었고, 라만 분광법에서 ZnO와 graphene 피크를 확인하였다. 제작한 태양전지의 전기적 특성을 솔라시뮬레이터로 측정하였고 0.05 V/s의 속도로 2회 제막한 ETL 소자에서 1.94%의 가장 높은 광전변환효율을 나타내었다.

Keywords

References

  1. K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H. L. Stormer, "Ultrahigh Electron Mobility in Suspended Graphene", Solid State Communications, 146(9-10), 351-355 (2008). https://doi.org/10.1016/j.ssc.2008.02.024
  2. S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, A. K. Geim, "Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer", Phys. Rev. Lett. 100, 016602 (2008). https://doi.org/10.1103/PhysRevLett.100.016602
  3. A. A. Balandin, S. Ghosh, D. Teweldebrhan, I. Calizo, W. Bao, F. Miao, C. N. Lau, "Extremely high thermal conductivity of graphene: prospects for thermal management applications in silicon nanoelectronics", 2008 IEEE Silicon Nanoelectronics Workshop (2008).
  4. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A. K. Geim, "Fine structure constant defines visual transparency of graphene", Science, 320(5881), 1308 (2008). https://doi.org/10.1126/science.1156965
  5. A. K. Geim, and K. S. Novoselov, "The rise of graphene", Nature Materials, 6, 183-191 (2007). https://doi.org/10.1038/nmat1849
  6. A. J. Bard, L. R. Faulkner, "Electrochemical Methods: Fundamentals and Applications," Wiley, New York, Surface Technology, 20 (1983).
  7. P. T. Kissinger, W. R. Heineman, "Laboratory Techniques in Electroanalytical Chemistry," Marcel Dekker, INC., New York, 333 (1996).
  8. J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben, "Handbook of X-ray Photoelectron Spectroscopy", Eds. J. Chastain, Perkin-Elmer Corporation, Minnesota, USA (1992).
  9. E. Smith, G. Dent, "Modern Raman Spectroscopy: A Practical Approach", John Wiley & Sons, Ltd, England (2005).
  10. S. Jung, J. Lee, J. Seo, U. Kim, Y. Choi, and H. Park, "Development of annealing-free, solution-processable inverted organic solar cells with N-doped graphene electrodes using zinc oxide nanoparticles", Nano Lett., 18(2), 1337-1343 (2018). https://doi.org/10.1021/acs.nanolett.7b05026