• Title/Summary/Keyword: P-388 cells

Search Result 108, Processing Time 0.028 seconds

Search for Novel Stress-responsive Protein Components Using a Yeast Mutant Lacking Two Cytosolic Hsp70 Genes, SSA1 and SSA2

  • Matsumoto, Rena;Rakwal, Randeep;Agrawal, Ganesh Kumar;Jung, Young-Ho;Jwa, Nam-Soo;Yonekura, Masami;Iwahashi, Hitoshi;Akama, Kuniko
    • Molecules and Cells
    • /
    • v.21 no.3
    • /
    • pp.381-388
    • /
    • 2006
  • Heat shock proteins (Hsp) 70 are a ubiquitous family of molecular chaperones involved in many cellular processes. A yeast strain, ssa1/2, with two functionally redundant cytosolic Hsp70s (SSA1 and SSA2) deleted shows thermotolerance comparable to mildly heatshocked wild type yeast, as well as increased protein synthesis and ubiquitin-proteasome protein degradation. Since mRNA abundance does not always correlate well with protein expression levels it is essential to study proteins directly. We used a gel-based approach to identify stress-responsive proteins in the ssa1/2 mutant and identified 43 differentially expressed spots. These were trypsin-digested and analyzed by nano electrospray ionization liquid chromatography tandem mass spectrometry (nESI-LC-MS/MS). A total of 22 non-redundant proteins were identified, 11 of which were confirmed by N-terminal sequencing. Nine proteins, most of which were up-regulated (2-fold or more) in the ssa1/2 mutant, proved to be stress-inducible proteins such as molecular chaperones and anti-oxidant proteins, or proteins related to carbohydrate metabolism. Interestingly, a translational factor Hyp2p up-regulated in the mutant was also found to be highly phosphorylated. These results indicate that the cytosolic Hsp70s, Ssa1p and Ssa2p, regulate an abundance of proteins mainly involved in stress responses and protein synthesis.

LncRNA-IMAT1 Promotes Invasion of Meningiomas by Suppressing KLF4/hsa-miR22-3p/Snai1 Pathway

  • Ding, Yaodong;Ge, Yu;Wang, Daijun;Liu, Qin;Sun, Shuchen;Hua, Lingyang;Deng, Jiaojiao;Luan, Shihai;Cheng, Haixia;Xie, Qing;Gong, Ye;Zhang, Tao
    • Molecules and Cells
    • /
    • v.45 no.6
    • /
    • pp.388-402
    • /
    • 2022
  • Malignant meningiomas often show invasive growth that makes complete tumor resection challenging, and they are more prone to recur after radical resection. Invasive meningioma associated transcript 1 (IMAT1) is a long noncoding RNA located on Homo sapiens chromosome 17 that was identified by our team based on absolute expression differences in invasive and non-invasive meningiomas. Our studies indicated that IMAT1 was highly expressed in invasive meningiomas compared with non-invasive meningiomas. In vitro studies showed that IMAT1 promoted meningioma cell invasion through the inactivation of the Krüppel-like factor 4 (KLF4)/hsa-miR22-3p/Snai1 pathway by acting as a sponge for hsa-miR22-3p, and IMAT1 knockdown effectively restored the tumor suppressive properties of KLF4 by preserving its tumor suppressor pathway. In vivo experiments confirmed that IMAT1 silencing could significantly inhibit the growth of subcutaneous tumors and prolong the survival period of tumor-bearing mice. Our findings demonstrated that the high expression of IMAT1 is the inherent reason for the loss of the tumor suppressive properties of KLF4 during meningioma progression. Therefore, we believe that IMAT1 may be a potential biological marker and treatment target for meningiomas.

Antitumor Activity of Peptide Fraction from Traditional Korean Soy Sauce

  • Lee, Hong-Jin;Lee, Ki-Won;Kim, Kyoung-Heon;Kim, Hyun-Kyung;Lee, Hyong-Joo
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.3
    • /
    • pp.628-630
    • /
    • 2004
  • Antitumor activities of a peptide fraction isolated from traditional Korean soy sauce (SSP) were investigated in vitro and in vivo using cancer cell lines and F9 teratocarcinoma-bearing BALB/c mice. SSP exerted a dose-dependent antiproliferative effect on P388D1 mouse lymphoma, F9 mouse teratocarcinoma, and DLD-l human colon cancer cells with $IC_{50}$ values of 11, 50, and $50\mug/ml$, respectively. Tumor growth in F9 teratocarcinoma-bearing BALB/c mice, orally administered with 80 and 200 mg/kg/day of SSPs, was inhibited 10.3% and 52.4%, respectively, and survival days increased by 11.9% and 22.1%, respectively, compared to the control group. The results of antitumor activities exerted by SSP in vitro and in vivo suggest the feasibility of using SSP as an antitumor agent.

Complementation of E. coli cysQ Mutant with Arabidopsis AHL Gene Encoding a 3'(2'),5'-Bisphosphate Nucleotidase

  • Cheong, Jong-Joo;Kwon, Hawk-Bin
    • Journal of Applied Biological Chemistry
    • /
    • v.48 no.4
    • /
    • pp.183-186
    • /
    • 2005
  • Arabidopsis AHL gene encodes a 3'(2')-phosphoadenosine 5'-phosphate (PAP)-specific phosphatase that plays a role in the sulfate activation pathway. We complemented E. coli cysQ mutant defective in cysteine biosynthesis with the AHL gene. AHL cDNA was cloned into the prokaryotic expression vector pKK388-1 and transformed into the bacterial mutant. Since cysQ mutant is a leaky cysteine auxotroph only under aerobic conditions, the bacteria were grown in liquid media with vigorous shaking to provide more aeration. In cysteine-free medium, cysQ mutant and the mutant harboring empty vector did not grow well, whereas cells harboring AHL cDNA exhibited significantly improved growth with doubling time of approximately 3 h. cysQ is known to encode a 3'(2'),5'-diphosphonucleoside 3'(2')-phosphohydrolase (DPNPase). However, our data suggest that cysQ protein has PAP-specific phosphatase activity in addition to DPNPase activity. Microbial complementation procedure described in this paper is useful for structure-activity studies of PAP-specific phosphatases identified from microbes and plants.

Snail Promotes Cancer Cell Proliferation via Its Interaction with the BIRC3

  • Rho, Seung Bae;Byun, Hyun-Jung;Kim, Boh-Ram;Lee, Chang Hoon
    • Biomolecules & Therapeutics
    • /
    • v.30 no.4
    • /
    • pp.380-388
    • /
    • 2022
  • Snail is implicated in tumour growth and metastasis and is up-regulated in various human tumours. Although the role of Snails in epithelial-mesenchymal transition, which is particularly important in cancer metastasis, is well known, how they regulate tumour growth is poorly described. In this study, the possible molecular mechanisms of Snail in tumour growth were explored. Baculoviral inhibitor of apoptosis protein (IAP) repeat-containing protein 3 (BIRC3), a co-activator of cell proliferation during tumourigenesis, was identified as a Snail-binding protein via a yeast two-hybrid system. Since BIRC3 is important for cell survival, the effect of BIRC3 binding partner Snail on cell survival was investigated in ovarian cancer cell lines. Results revealed that Bax expression was activated, while the expression levels of anti-apoptotic proteins were markedly decreased by small interfering RNA (siRNA) specific for Snail (siSnail). siSnail, the binding partner of siBIRC3, activated the tumour suppressor function of p53 by promoting p53 protein stability. Conversely, BIRC3 could interact with Snail, for this reason, the possibility of BIRC3 involvement in EMT was investigated. BIRC3 overexpression resulted in a decreased expression of the epithelial marker and an increased expression of the mesenchymal markers. siSnail or siBIRC3 reduced the mRNA levels of matrix metalloproteinase (MMP)-2 and MMP-9. These results provide evidence that Snail promotes cell proliferation by interacting with BIRC3 and that BIRC3 might be involved in EMT via binding to Snail in ovarian cancer cells. Therefore, our results suggested the novel relevance of BIRC3, the binding partner of Snail, in ovarian cancer development.

The Control Mechanism of Gonadotropin-Releasing Hormone and Dopamine on Gonadotropin Release from Cultured Pituitary Cells of Rainbow Trout Oncorhynchus mykiss at Different Reproductive Stages

  • Kim, Dae-Jung;Suzuki, Yuzuru;Aida, Katsumi
    • Fisheries and Aquatic Sciences
    • /
    • v.14 no.4
    • /
    • pp.379-388
    • /
    • 2011
  • The mechanism by which gonadotropin-releasing hormone (GnRH) and dopamine (DA) control gonadotropin (GTH) release was studied in male and female rainbow trout using cultured pituitary cells obtained at different reproductive stages. The mechanisms of follicle-stimulating hormone (FSH) release by GnRH and DA could not be determined yet. However, basal and salmon-type GnRH (sGnRH)- or chicken-II-type GnRH (cGnRH-II)- induced luteinizing hormone (LH) release increased with gonadal maturation in both sexes. LH release activity was higher after sGnRH stimulation than cGnRH-II stimulation at maturing stages in both sexes. The GnRH antagonist ([Ac-3, 4-dehydro-$Pro^1$, D-p-F-$Phe^2$, D-$Trp^{3,6}$] GnRH) suppressed LH release by sGnRH stimulation in a dose-dependent manner, although the effect was weak in maturing fish. The role of DA as a GTH-release inhibitory factor differs during the reproductive cycle: the inhibition of sGnRH-stimulated LH release by DA was stronger in immature fish than in maturing, ovulating, or spermiated fish. DA did not completely inhibit sGnRH-stimulated LH release, and DA alone did not alter basal LH release. Relatively high doses ($10^{-6}$ or $10^{-5}M$) of domperidone (DOM, a DA D2 antagonist) increased LH release, which did not change with reproductive stage in either sex. The potency of DOM to enhance sGnRH-stimulated LH release was higher in maturing and ovulated fish than in immature fish. These data suggest that LH release from the pituitary gland is controlled by dual neuroendocrine mechanisms by GnRH and DA in rainbow trout, as has been reported in other teleosts. The mechanism of control of FSH release, however, remains unknown.

Effects of Bay K, cAMP and Isoprenaline on the Na-Ca Exchange Current of Single Rabbit Atrial Cells (토끼 심방근에서 Na-Ca 교환 전류에 대한 Bay K, cAMP, Isoprenaline 효과)

  • Ho, Won-Kyung;Earm, Yung-E
    • The Korean Journal of Physiology
    • /
    • v.24 no.2
    • /
    • pp.377-388
    • /
    • 1990
  • Ca movements during the late plateau phase in rabbit atrium implicate Na-Ca exchange. In single atrial cells isolated from the rabbit the properties of the inward current of Na-Ca exchange were investigated using the whole cell voltage clamp technique. The inward currents were recorded during repolarization following brief 2 ms depolarizing pulse to +40 mV from a holding potential of -70 mV. Followings are the results obtained: 1) When stimulated every 30 sec, the inward currents were activated and reached peak values $6{\sim}12\;ms$ after the beginning of depolarizing pulse. The mean current amplitude was 342 pA/cell. 2) The current decayed spontaneously from the peak activation and the timecourse of the relaxation showed two different phases: fast and slow phase. 3) The recovery of the inward current was tested by paired pulse of various interval. The peak current recovered exponentialy with a time course similar to that of Ca current recovery. 4) Relaxation timecourse was also affected by pulse interval and time constant was reduced almost linearly according to the decrease of pulse interval between 30 sec and 1 sec. 5) The peak inward current was increased by long prepulse stimulation, Bay K, isoprenaline or c-AMP. 6) The relaxation time constant of the inward current was prolonged by Bay K or c-AMP, and shortened by isoprenaline. From the above results, it could be concluded that increase of the calcium current potentiates and prolongs intracellular calcium transients, while shortening of the timecourse by isoprenaline or short interval stimulations might be due to the facilitation of Ca uptake by SR.

  • PDF

Isolation and Characterization of a Formate Dehydrogenase cDNA in Poplar (Populus alba ${\times}$ P. glandulosa) (현사시나무에서 Formate Dehydrogenase cDNA의 분리와 특성 구명)

  • Bae, Eun-Kyung;Lee, Hyoshin;Lee, Jae-Soon;Choi, Young-Im;Yoon, Seo-Kyung;Eo, Soo Hyung
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.3
    • /
    • pp.331-337
    • /
    • 2013
  • Formate dehydrogenase (FDH), catalyzing the oxidation of the formate ion to carbon dioxide, is known as the stress protein in response to drought, low temperature and pathogen infection. To study the functions of FDH in poplar (Populus alba ${\times}$ P. glandulosa), we isolated a FDH cDNA (PagFDH1) and examined its expressional characteristics. The PagFDH1 is 1,499 base pairs long and encodes a putative 388 amino acid protein with an expected molecular mass of 42.5 kDa. The PagFDH1 protein has N-terminal mitochondria signal peptide and $NAD^+$ binding domain. Southern blot analysis indicated that a single copy of the PagFDH1 is present in the poplar genome. PagFDH1 is expressed highly in the suspension cells (especially in the lag and early exponential phases) and moderately in roots, flowers and leaves. ABA-mediated enhanced expression of PagFDH1 in response to drought and salt stress treatments indicates that the gene product could play an important role in the development of stress resistant trees.

Effect of Glycyrrhizae Radix on the Immune Responses(II) - Immuno-regulatory Action of Glycyrrhizin and Glycyrrhetinic Acid - (감초가 면역반응에 미치는 영향(II) - Glycyrrhizin 및 Glycyrrhetinic acid의 면역조절작용 -)

  • 한종현;오찬호;은재순
    • YAKHAK HOEJI
    • /
    • v.35 no.3
    • /
    • pp.174-181
    • /
    • 1991
  • These experiments were conducted to investigate the effects of glycyrrhizin(GL) and glycyrrhetinic acid(GA) on histamine synthesis, lymphocyte blastogenesis in C57BL/6J mice splenocytes, IL-1 production, $Ca^{2+}$ uptake by macrophage-like P388D$_{1}$ cells and plaque forming cell assay against SRBC. Histamine contents, lymphocyte blastogenesis, IL-1 activity, $Ca^{2+}$ uptake and plaque forming cell were determined by enzyme isotope method, [sup 3/H]-thymidine incorporation, C3H/HeJ mouse thymocytes proliferation, the addition of 5 $\mu$Ci/ml $^{45}$Ca$^{2+}$ to P388D$_{1}$, cell suspension and assay to sheep red blood cell, respectively. Cytotoxicity, which was expressed as 50% mortality, was occurred by the addition of GL(10$^{-3}$M) and GA(10$^{-4}$M). Histamine production in mouse spleen cell culture was significantly increased by the addition of 0.25 $\mu\textrm{g}$/ml of Con A, after 48 hour incubation. Con A dependent T-lymphocyte proliferation was also enhanced by the addition of 0.25 .mu.g/ml of Con A. The effects of GL on histamine contents and T-lymphocyte proliferation were significantly decreased at high dose (10$^{-5}$M), while IL-1 activity was remarkably suppressed by 10$^{-8}$~10$^{-4}$M of GL. $Ca^{2+}$ uptake was not changed, but antibody production was increased by GL(10 mg/kg). GA inhibited histamine contents at 10$^{-9}$~10$^{-7}$ and depressed Con A (0.25 $\mu\textrm{g}$/ml) dependent T-lymphocyte proliferation at 10$^{-7}$~10$^{-5}$M of GA, but increased suboptimal dose (Con A 0.1 $\mu\textrm{g}$/ml) at 10$^{-9}$~10$^{-7}$M of GA. IL-1 activity was suppressed by 10$^{-8}$~10$^{-4}$M of GA and $Ca^{2+}$ uptake was enhanced by 10$^{-9}$~10$^{-6}$ of GA, but antibody production was not changed by GA. From the above results, it is suggested that GL and GA have immuno-regulatory action. GL decreased cell-mediated immune response, and increased humoral immune response at high dose. On the other hand, low dose of GA enhanced cell-mediated immune response, while high doses of GA decreased humoral immune reaction.

  • PDF

Identification of Genetic Causes of Inherited Peripheral Neuropathies by Targeted Gene Panel Sequencing

  • Nam, Soo Hyun;Hong, Young Bin;Hyun, Young Se;Nam, Da Eun;Kwak, Geon;Hwang, Sun Hee;Choi, Byung-Ok;Chung, Ki Wha
    • Molecules and Cells
    • /
    • v.39 no.5
    • /
    • pp.382-388
    • /
    • 2016
  • Inherited peripheral neuropathies (IPN), which are a group of clinically and genetically heterogeneous peripheral nerve disorders including Charcot-Marie-Tooth disease (CMT), exhibit progressive degeneration of muscles in the extremities and loss of sensory function. Over 70 genes have been reported as genetic causatives and the number is still growing. We prepared a targeted gene panel for IPN diagnosis based on next generation sequencing (NGS). The gene panel was designed to detect mutations in 73 genes reported to be genetic causes of IPN or related peripheral neuropathies, and to detect duplication of the chromosome 17p12 region, the major genetic cause of CMT1A. We applied the gene panel to 115 samples from 63 non-CMT1A families, and isolated 15 pathogenic or likelypathogenic mutations in eight genes from 25 patients (17 families). Of them, eight mutations were unreported variants. Of particular interest, this study revealed several very rare mutations in the SPTLC2, DCTN1, and MARS genes. In addition, the effectiveness of the detection of CMT1A was confirmed by comparing five 17p12-nonduplicated controls and 15 CMT1A cases. In conclusion, we developed a gene panel for one step genetic diagnosis of IPN. It seems that its time- and cost-effectiveness are superior to previous tiered-genetic diagnosis algorithms, and it could be applied as a genetic diagnostic system for inherited peripheral neuropathies.