DOI QR코드

DOI QR Code

Identification of Genetic Causes of Inherited Peripheral Neuropathies by Targeted Gene Panel Sequencing

  • Nam, Soo Hyun (Department of Biological Sciences, Kongju National University) ;
  • Hong, Young Bin (Stem Cell & Regenerative Medicine Center and Neuroscience Center, Samsung Medical Center) ;
  • Hyun, Young Se (Department of Biological Sciences, Kongju National University) ;
  • Nam, Da Eun (Department of Biological Sciences, Kongju National University) ;
  • Kwak, Geon (Department of Neurology, Sungkyunkwan University School of Medicine) ;
  • Hwang, Sun Hee (Department of Neurology, Sungkyunkwan University School of Medicine) ;
  • Choi, Byung-Ok (Stem Cell & Regenerative Medicine Center and Neuroscience Center, Samsung Medical Center) ;
  • Chung, Ki Wha (Department of Biological Sciences, Kongju National University)
  • Received : 2015.10.20
  • Accepted : 2016.02.22
  • Published : 2016.05.31

Abstract

Inherited peripheral neuropathies (IPN), which are a group of clinically and genetically heterogeneous peripheral nerve disorders including Charcot-Marie-Tooth disease (CMT), exhibit progressive degeneration of muscles in the extremities and loss of sensory function. Over 70 genes have been reported as genetic causatives and the number is still growing. We prepared a targeted gene panel for IPN diagnosis based on next generation sequencing (NGS). The gene panel was designed to detect mutations in 73 genes reported to be genetic causes of IPN or related peripheral neuropathies, and to detect duplication of the chromosome 17p12 region, the major genetic cause of CMT1A. We applied the gene panel to 115 samples from 63 non-CMT1A families, and isolated 15 pathogenic or likelypathogenic mutations in eight genes from 25 patients (17 families). Of them, eight mutations were unreported variants. Of particular interest, this study revealed several very rare mutations in the SPTLC2, DCTN1, and MARS genes. In addition, the effectiveness of the detection of CMT1A was confirmed by comparing five 17p12-nonduplicated controls and 15 CMT1A cases. In conclusion, we developed a gene panel for one step genetic diagnosis of IPN. It seems that its time- and cost-effectiveness are superior to previous tiered-genetic diagnosis algorithms, and it could be applied as a genetic diagnostic system for inherited peripheral neuropathies.

Keywords

References

  1. Antoniadi, T., Buxton, C., Dennis, G., Forrester, N., Smith, D., Lunt, P., and Burton-Jones, S. (2015). Application of targeted multigene panel testing for the diagnosis of inherited peripheral neuropathy provides a high diagnostic yield with unexpected phenotype-genotype variability. BMC Med. Genet. 16, 84.
  2. Bone, L.J., Deschenes, S.M., Balice-Gordon, R.J., Fischbeck, K.H., and Scherer, S.S. (1997). Connexin32 and X-linked Charcot-Marie-Tooth disease. Neurobiol. Dis. 4, 221-230. https://doi.org/10.1006/nbdi.1997.0152
  3. Choi, B.O., Kim, J., Lee, K.L., Yu, J.S., Hwang, J.H., and Chung, K.W. (2007). Rapid diagnosis of CMT1A duplications and HNPP deletions by multiplex microsatellite PCR. Mol. Cells 23, 39-48.
  4. Choi, B.O., Koo, S.K., Park, M.H., Rhee, H., Yang, S.J., Choi, K.G., Jung, S.C., Kim, H.S., Hyun, Y.S., Nakhro, K., et al. (2012). Exome sequencing is an efficient tool for genetic screening of Charcot-Marie-Tooth disease. Hum. Mutat. 33, 1610-1615. https://doi.org/10.1002/humu.22143
  5. Choi, B.O., Nakhro, K., Park, H.J., Hyun, Y.S., Lee, J.H., Kanwal, S., Jung, S.C., and Chung, K.W. (2015). A cohort study of MFN2 mutations and phenotypic spectrums in Charcot-Marie-Tooth disease 2A patients. Clin. Genet. 87, 594-598. https://doi.org/10.1111/cge.12432
  6. Chung, K.W., Kim, S.B., Park, K.D., Choi, K.G., Lee, J.H., Eun, H.W., Suh, J.S., Hwang, J.H., Kim, W.K., Seo, B.C., et al. (2006). Early onset severe and late-onset mild Charcot-Marie-Tooth disease with mitofusin 2 (MFN2) mutations. Brain 129, 2103-2118. https://doi.org/10.1093/brain/awl174
  7. Drew, A.P., Zhu, D., Kidambi, A., Ly, C., Tey, S., Brewer, M.H., Ahmad-Annuar, A., Nicholson, G.A., and Kennerson, M.L. (2015). Improved inherited peripheral neuropathy genetic diagnosis by whole-exome sequencing. Mol. Genet. Genomic Med. 3, 143-154. https://doi.org/10.1002/mgg3.126
  8. Ernst, D., Murphy, S.M., Sathiyanadan, K., Wei, Y., Othman, A., Laura, M., Liu, Y.T., Penno, A., Blake, J., Donaghy, M., et al. (2015). Novel HSAN1 mutation in serine palmitoyltransferase resides at a putative phosphorylation site that is involved in regulating substrate specificity. Neuromolecular Med. 17, 47-57. https://doi.org/10.1007/s12017-014-8339-1
  9. Gonzaga-Jauregui, C., Harel, T., Gambin, T., Kousi, M., Griffin, L.B., Francescatto, L., Ozes, B., Karaca, E., Jhangiani, S.N., Bainbridge, M.N., et al. (2015). Exome sequence analysis suggests that genetic burden contributes to phenotypic variability and complex neuropathy. Cell Rep. 12, 1169-1183 https://doi.org/10.1016/j.celrep.2015.07.023
  10. Gonzalez, M., McLaughlin, H., Houlden, H. Guo, M., Yo-Tsen, L., Hadjivassilious, M., Speziani, F., Yang, X.L., Antonellis, A., Reilly, M.M., et al. (2013). Exome sequencing identifies a significant variant in methionyl-tRNA synthetase (MARS) in a family with late-onset CMT2. J. Neurol. Neurosurg. Psychiatry 84, 1247-1249. https://doi.org/10.1136/jnnp-2013-305049
  11. Hyun, Y.S., Park, H.J., Heo, S.H., Yoon, B.R., Nam, S.H., Kim, S.B., Park, C.I., Choi, B.O., and Chung, K.W. (2014). Rare variants in methionyl- and tyrosyl-tRNA synthetase genes in late-onset autosomal dominant Charcot-Marie-Tooth neuropathy. Clin. Genet. 86, 592-594. https://doi.org/10.1111/cge.12327
  12. Lupski, J.R., and Garcia, C.A. (2000). Charcot-Marie-Tooth peripheral neuropathies and related disorders. In the metabolic and molecular bases of inherited disease. Vol. 4. 8th, C.R. Scriver, ed. (New York, Mc Graw Hill), pp. 5759-5788.
  13. Montenegro, G., Powell, E., Huang, J. Speziani, F., Edwards, Y.J., Beecham, G., Hulme, W., Siskind, C., Vance, J., Shy, M., et al. (2011). Exome sequencing allows for rapid gene identification in a Charcot-Marie-Tooth family. Ann. Neurol. 69, 464-470. https://doi.org/10.1002/ana.22235
  14. Murphy, S.M., Laura, M., and Reilly, M.M. (2013). DNA testing in hereditary neuropathies. Handb. Clin. Neurol. 115, 213-232. https://doi.org/10.1016/B978-0-444-52902-2.00012-6
  15. Nakhro, K., Park, J.M., Choi, B.O., and Chung, K.W. (2013). Missense mutations of mitofusin 2 in axonal Charcot-Marie-Tooth neuropathy: polymorphic or incomplete penetration?. Anim. Cells Syst. 17, 228-236. https://doi.org/10.1080/19768354.2013.814587
  16. Nelis, E., Van Broeckhoven, C., De Jonghe, P., Lofgren, A., Vandenberghe, A., Latour, P., Le Guern, E., Brice, A., Mostacciuolo, M.L., Schiavon, F., et al. (1996). Estimation of the mutation frequencies in Charcot-Marie-Tooth disease type 1 and hereditary neuropathy with liability to pressure palsies: a European collaborative study. Eur. J. Hum. Genet. 4, 25-33. https://doi.org/10.1159/000472166
  17. Oterino, A., Monton, F.I., Cabrera, V.M., Pinto, F., Gonzalez, A., and Lavilla, N.R. (1996). Arginine-164-tryptophan substitution in connexin32 associated with X linked dominant Charcot-Marie-Tooth disease. J. Med. Genet. 33, 413-415. https://doi.org/10.1136/jmg.33.5.413
  18. Patzko, A., and Shy, M.E. (2011). Update on Charcot-Marie-Tooth disease. Curr. Neurol. Neurosci. Rep. 11, 78-88. https://doi.org/10.1007/s11910-010-0158-7
  19. Puls, I., Jonnakuty, C., LaMonte, B.H., Holzbaur, E.L., Tokito, M., Mann, E., Floeter, M.K., Bidus, K., Drayna, D., Oh, S.J., et al. (2003). Mutant dynactin in motor neuron disease. Nat. Genet. 33, 455-456. https://doi.org/10.1038/ng1123
  20. Rossor, A.M., Polke, J.M., Houlden, H., and Reilly, M.M. (2013). Clinical implications of genetic advances in Charcot-Marie-Tooth disease. Nat. Rev. Neurol. 9, 562-571. https://doi.org/10.1038/nrneurol.2013.179
  21. Rotthier, A., Auer-Grumbach, M., Janssens, K., Baets, J., Penno, A., Almeida-Souza, L., Van Hoof, K., Jacobs, A., De Vriendt, E., Schlotter-Weigel, B., et al. (2010). Mutations in the SPTLC2 subunit of serine palmitoyltransferase cause hereditary sensory and autonomic neuropathy type I. Am. J. Hum. Genet. 87, 513-522. https://doi.org/10.1016/j.ajhg.2010.09.010
  22. Rudnik-Schoneborn, S., Tolle, D., Senderek, J., Eggermann, K., Elbracht, M., Kornak, U., von der Hagen, M., Kirschner, J., Leube, B., Muller-Felber, W., et al. (2016). Diagnostic algorithms in Charcot-Marie-Tooth neuropathies: experiences from a German genetic laboratory on the basis of 1206 index patients. Clin. Genet. 89, 34-43. https://doi.org/10.1111/cge.12594
  23. Saporta, A.S., Sottile, S.L., Miller, L.J., Feely, S.M., Siskind, C.E., and Shy, M.E. (2011). Charcot-Marie-Tooth disease subtypes and genetic testing strategies. Ann. Neurol. 69, 22-33. https://doi.org/10.1002/ana.22166
  24. Schiavon, F., Fracasso, C., and Mostacciuolo, M.L. (1996). Novel missense mutation of the connexin32 (GJB1) gene in X-linked dominant Charcot-Marie-Tooth neuropathy. Hum. Mutat. 8, 83-84. https://doi.org/10.1002/(SICI)1098-1004(1996)8:1<83::AID-HUMU14>3.0.CO;2-N
  25. Sinkiewicz-Darol, E., Lacerda, A.F., Kostera-Pruszczyk, A., Potulska-Chromik, A., Sokolowska, B., Kabzinska, D., Brunetti, C.R., Hausmanowa-Petrusewicz, I., and Kochanski, A. (2015). The LITAF/SIMPLE I92V sequence variant results in an earlier age of onset of CMT1A/HNPP diseases. Neurogenetics 16, 27-32. https://doi.org/10.1007/s10048-014-0426-9
  26. Ylikallio, E., Johari, M., Konovalova, S., Moilanen, J.S., Kiuru-Enari, S., Auranen, M., Pajunen, L., and Tyynismaa, H. (2014). Targeted next-generation sequencing reveals further genetic heterogeneity in axonal Charcot-Marie-Tooth neuropathy and a mutation in HSPB1. Eur. J. Hum. Genet. 22, 522-527. https://doi.org/10.1038/ejhg.2013.190

Cited by

  1. Identification of FASTKD2 compound heterozygous mutations as the underlying cause of autosomal recessive MELAS-like syndrome vol.35, 2017, https://doi.org/10.1016/j.mito.2017.05.005
  2. DCTN1 -related neurodegeneration: Perry syndrome and beyond vol.41, 2017, https://doi.org/10.1016/j.parkreldis.2017.06.004
  3. Genotype–phenotype correlation of Charcot-Marie-Tooth type 1E patients with PMP22 mutations vol.38, pp.7, 2016, https://doi.org/10.1007/s13258-016-0423-5
  4. Peripheral neuropathy via mutant tRNA synthetases: Inhibition of protein translation provides a possible explanation vol.38, pp.9, 2016, https://doi.org/10.1002/bies.201600052
  5. Recent advances in the genetic neuropathies 2016, https://doi.org/10.1097/WCO.0000000000000373
  6. Histopathological features of a patient with Charcot-Marie-Tooth disease type 2U/AD-CMTax-MARS vol.21, pp.4, 2016, https://doi.org/10.1111/jns.12193
  7. Identification and functional characterization of two missense mutations in NDRG1 associated with Charcot-Marie-Tooth disease type 4D 2017, https://doi.org/10.1002/humu.23309
  8. Rapid Identification of Pathogenic Variants in Two Cases of Charcot-Marie-Tooth Disease by Gene-Panel Sequencing vol.18, pp.4, 2017, https://doi.org/10.3390/ijms18040770
  9. Clinical characterization and genetic analysis of Korean patients with X-linked Charcot-Marie-Tooth disease type 1 vol.22, pp.3, 2017, https://doi.org/10.1111/jns.12217
  10. Substrate interaction defects in histidyl-tRNA synthetase linked to dominant axonal peripheral neuropathy vol.39, pp.3, 2017, https://doi.org/10.1002/humu.23380
  11. Nerve Biopsy Is Still Useful in Some Inherited Neuropathies vol.77, pp.2, 2017, https://doi.org/10.1093/jnen/nlx111
  12. ) mutation in an axonal Charcot-Marie-Tooth disease family vol.23, pp.1, 2018, https://doi.org/10.1111/jns.12249
  13. Wide phenotypic spectrum in axonal Charcot–Marie–Tooth neuropathy type 2 patients with KIF5A mutations vol.40, pp.1, 2018, https://doi.org/10.1007/s13258-017-0612-x
  14. Clinical and genetic investigation in Chinese patients with demyelinating Charcot-Marie-Tooth disease pp.10859489, 2018, https://doi.org/10.1111/jns.12277
  15. Novel methionyl-tRNA synthetase gene variants/phenotypes in interstitial lung and liver disease: A case report and review of literature vol.24, pp.36, 2018, https://doi.org/10.3748/wjg.v24.i36.4208
  16. gene related to a rare Charcot-Marie-Tooth neuropathy type 2U vol.23, pp.2, 2018, https://doi.org/10.1111/jns.12264
  17. Genetic profile and onset features of 1005 patients with Charcot-Marie-Tooth disease in Japan vol.90, pp.2, 2018, https://doi.org/10.1136/jnnp-2018-318839
  18. NGS Technologies as a Turning Point in Rare Disease Research, Diagnosis and Treatment vol.25, pp.3, 2016, https://doi.org/10.2174/0929867324666170718101946
  19. Establishing diagnostic criteria for Perry syndrome vol.89, pp.5, 2018, https://doi.org/10.1136/jnnp-2017-316864
  20. Perry disease: recent advances and perspectives vol.7, pp.5, 2016, https://doi.org/10.1080/21678707.2019.1625766
  21. Charcot-Marie-Tooth: From Molecules to Therapy vol.20, pp.14, 2016, https://doi.org/10.3390/ijms20143419
  22. Zebrafish is a central model to dissect the peripheral neuropathy vol.41, pp.9, 2019, https://doi.org/10.1007/s13258-019-00838-2
  23. Compound heterozygous mutations of SH3TC2 in Charcot-Marie-Tooth disease type 4C patients vol.64, pp.9, 2016, https://doi.org/10.1038/s10038-019-0636-y
  24. A Novel Mutation in MARS in a Patient with Charcot-Marie-Tooth Disease, Axonal, Type 2U with Congenital Onset vol.6, pp.3, 2016, https://doi.org/10.3233/jnd-190404
  25. Next-generation sequencing in Charcot-Marie-Tooth disease: opportunities and challenges vol.15, pp.11, 2019, https://doi.org/10.1038/s41582-019-0254-5
  26. Yield of next‐generation neuropathy gene panels in axonal neuropathies vol.24, pp.4, 2016, https://doi.org/10.1111/jns.12356
  27. Whole exome sequencing establishes diagnosis of Charcot-Marie-Tooth 4J, 1C, and X1 subtypes vol.8, pp.4, 2016, https://doi.org/10.1002/mgg3.1141
  28. Alanyl-tRNA synthetase 1 (AARS1) gene mutation in a family with intermediate Charcot-Marie-Tooth neuropathy vol.42, pp.6, 2020, https://doi.org/10.1007/s13258-020-00933-9
  29. Whole exome sequencing reveals a broader variant spectrum of Charcot-Marie-Tooth disease type 2 vol.21, pp.2, 2020, https://doi.org/10.1007/s10048-019-00591-4
  30. Aminoacyl‐tRNA synthetases in Charcot–Marie–Tooth disease: A gain or a loss? vol.157, pp.3, 2016, https://doi.org/10.1111/jnc.15249
  31. Genetic and clinical spectrums in Korean Charcot‐Marie‐Tooth disease patients with myelin protein zero mutations vol.9, pp.6, 2021, https://doi.org/10.1002/mgg3.1678
  32. tRNA overexpression rescues peripheral neuropathy caused by mutations in tRNA synthetase vol.373, pp.6559, 2021, https://doi.org/10.1126/science.abb3356
  33. Diagnostic yield of advanced genetic testing in patients with hereditary neuropathies: A retrospective single‐site study vol.64, pp.4, 2016, https://doi.org/10.1002/mus.27368
  34. Genotype and phenotype distribution of 435 patients with Charcot–Marie–Tooth disease from central south China vol.28, pp.11, 2021, https://doi.org/10.1111/ene.15024