DOI QR코드

DOI QR Code

LncRNA-IMAT1 Promotes Invasion of Meningiomas by Suppressing KLF4/hsa-miR22-3p/Snai1 Pathway

  • Ding, Yaodong (Department of Laboratory Medicine, Huashan Hospital, Fudan University) ;
  • Ge, Yu (Department of Laboratory Medicine, Huashan Hospital, Fudan University) ;
  • Wang, Daijun (Department of Neurosurgery, Huashan Hospital, Fudan University) ;
  • Liu, Qin (Department of Laboratory Medicine, Huashan Hospital, Fudan University) ;
  • Sun, Shuchen (Department of Neurosurgery, Huashan Hospital, Fudan University) ;
  • Hua, Lingyang (Department of Neurosurgery, Huashan Hospital, Fudan University) ;
  • Deng, Jiaojiao (Department of Neurosurgery, Huashan Hospital, Fudan University) ;
  • Luan, Shihai (Department of Neurosurgery, Huashan Hospital, Fudan University) ;
  • Cheng, Haixia (Department of Neurosurgery, Huashan Hospital, Fudan University) ;
  • Xie, Qing (Department of Neurosurgery, Huashan Hospital, Fudan University) ;
  • Gong, Ye (Department of Neurosurgery, Huashan Hospital, Fudan University) ;
  • Zhang, Tao (Department of Laboratory Medicine, Huashan Hospital, Fudan University)
  • Received : 2021.09.09
  • Accepted : 2021.12.26
  • Published : 2022.06.30

Abstract

Malignant meningiomas often show invasive growth that makes complete tumor resection challenging, and they are more prone to recur after radical resection. Invasive meningioma associated transcript 1 (IMAT1) is a long noncoding RNA located on Homo sapiens chromosome 17 that was identified by our team based on absolute expression differences in invasive and non-invasive meningiomas. Our studies indicated that IMAT1 was highly expressed in invasive meningiomas compared with non-invasive meningiomas. In vitro studies showed that IMAT1 promoted meningioma cell invasion through the inactivation of the Krüppel-like factor 4 (KLF4)/hsa-miR22-3p/Snai1 pathway by acting as a sponge for hsa-miR22-3p, and IMAT1 knockdown effectively restored the tumor suppressive properties of KLF4 by preserving its tumor suppressor pathway. In vivo experiments confirmed that IMAT1 silencing could significantly inhibit the growth of subcutaneous tumors and prolong the survival period of tumor-bearing mice. Our findings demonstrated that the high expression of IMAT1 is the inherent reason for the loss of the tumor suppressive properties of KLF4 during meningioma progression. Therefore, we believe that IMAT1 may be a potential biological marker and treatment target for meningiomas.

Keywords

Acknowledgement

This work was supported by the National Natural Science Foundation of China (81372707, 81772267).

References

  1. Albini, A. and Colacci, A. (1993). Inhibition of malignant tumor cell invasion: an approach to anti-progression. Basic Life Sci. 61, 335-350.
  2. Banan, R., Abbetmeier-Basse, M., Hong, B., Dumitru, C.A., Sahm, F., Nakamura, M., Krauss, J.K., and Hartmann, C. (2021). The prognostic significance of clinicopathological features in meningiomas: microscopic brain invasion can predict patient outcome in otherwise benign meningiomas. Neuropathol. Appl. Neurobiol. 47, 724-735. https://doi.org/10.1111/nan.12700
  3. Carter, L.E., Cook, D.P., McCloskey, C.W., Grondin, M.A., Landry, D.A., Dang, T., Collins, O., Gamwell, L.F., Dempster, H.A., and Vanderhyden, B.C. (2021). Transcriptional heterogeneity of stemness phenotypes in the ovarian epithelium. Commun. Biol. 4, 527. https://doi.org/10.1038/s42003-021-02045-w
  4. Chen, L., Wang, W., Cao, L., Li, Z., and Wang, X. (2016). Long non-coding RNA CCAT1 acts as a competing endogenous RNA to regulate cell growth and differentiation in acute myeloid leukemia. Mol. Cells 39, 330-336. https://doi.org/10.14348/MOLCELLS.2016.2308
  5. Choi, Y.J., Kim, N., Chang, H., Lee, H.S., Park, S.M., Park, J.H., Shin, C.M., Kim, J.M., Kim, J.S., Lee, D.H., et al. (2015). Helicobacter pylori-induced epithelial-mesenchymal transition, a potential role of gastric cancer initiation and an emergence of stem cells. Carcinogenesis 36, 553-563. https://doi.org/10.1093/carcin/bgv022
  6. Chuang, Y.C., Hsieh, M.C., Lin, C.C., Lo, Y.S., Ho, H.Y., Hsieh, M.J., and Lin, J.T. (2021). Pinosylvin inhibits migration and invasion of nasopharyngeal carcinoma cancer cells via regulation of epithelial-mesenchymal transition and inhibition of MMP-2. Oncol. Rep. 46, 143. https://doi.org/10.3892/or.2021.8094
  7. Ding, C., Yi, X., Xu, J., Huang, Z., Bu, X., Wang, D., Ge, H., Zhang, G., Gu, J., Kang, D., et al. (2020). Long non-coding RNA MEG3 modifies cell-cycle, migration, invasion, and proliferation through AKAP12 by sponging miR29c in meningioma cells. Front. Oncol. 10, 537763. https://doi.org/10.3389/fonc.2020.537763
  8. Dunagin, M., Cabili, M.N., Rinn, J., and Raj, A. (2015). Visualization of lncRNA by single-molecule fluorescence in situ hybridization. Methods Mol. Biol. 1262, 3-19. https://doi.org/10.1007/978-1-4939-2253-6_1
  9. Galani, V., Lampri, E., Varouktsi, A., Alexiou, G., Mitselou, A., and Kyritsis, A.P. (2017). Genetic and epigenetic alterations in meningiomas. Clin. Neurol. Neurosurg. 158, 119-125. https://doi.org/10.1016/j.clineuro.2017.05.002
  10. Goldbrunner, R., Minniti, G., Preusser, M., Jenkinson, M.D., Sallabanda, K., Houdart, E., von Deimling, A., Stavrinou, P., Lefranc, F., Lund-Johansen, M., et al. (2016). EANO guidelines for the diagnosis and treatment of meningiomas. Lancet Oncol. 17, e383-e391.
  11. Greening, D.W., Gopal, S.K., Mathias, R.A., Liu, L., Sheng, J., Zhu, H.J., and Simpson, R.J. (2015). Emerging roles of exosomes during epithelial-mesenchymal transition and cancer progression. Semin. Cell Dev. Biol. 40, 60-71. https://doi.org/10.1016/j.semcdb.2015.02.008
  12. Hessels, D., Klein Gunnewiek, J.M., van Oort, I., Karthaus, H.F., van Leenders, G.J., van Balken, B., Kiemeney, L.A., Witjes, J.A., and Schalken, J.A. (2003). DD3(PCA3)-based molecular urine analysis for the diagnosis of prostate cancer. Eur. Urol. 44, 8-15; discussion 15-16. https://doi.org/10.1016/S0302-2838(03)00201-X
  13. Jalali, S., Singh, S., Agnihotri, S., Wataya, T., Salehi, F., Alkins, R., Burrell, K., Navab, R., Croul, S., Aldape, K., et al. (2015). A role for matrix remodelling proteins in invasive and malignant meningiomas. Neuropathol. Appl. Neurobiol. 41, e16-e28. https://doi.org/10.1111/nan.12166
  14. Kim, S.H., Lim, K.H., Yang, S., and Joo, J.Y. (2021). Long non-coding RNAs in brain tumors: roles and potential as therapeutic targets. J. Hematol. Oncol. 14, 77. https://doi.org/10.1186/s13045-021-01088-0
  15. Lee, G.L., Dobi, A., and Srivastava, S. (2011). Prostate cancer: diagnostic performance of the PCA3 urine test. Nat. Rev. Urol. 8, 123-124. https://doi.org/10.1038/nrurol.2011.10
  16. Li, T., Ren, J., Ma, J., Wu, J., Zhang, R., Yuan, H., and Han, X. (2019). LINC00702/miR-4652-3p/ZEB1 axis promotes the progression of malignant meningioma through activating Wnt/β-catenin pathway. Biomed. Pharmacother. 113, 108718. https://doi.org/10.1016/j.biopha.2019.108718
  17. Lin, J., Li, X., Zhang, F., Zhu, L., and Chen, Y. (2021). Transcriptome wide analysis of long non-coding RNA-associated ceRNA regulatory circuits in psoriasis. J. Cell. Mol. Med. 25, 6925-6935. https://doi.org/10.1111/jcmm.16703
  18. Liu, T., Xu, P., Ke, S., Dong, H., Zhan, M., Hu, Q., and Li, J. (2022). Histone methyltransferase SETDB1 inhibits TGF-β-induced epithelial-mesenchymal transition in pulmonary fibrosis by regulating SNAI1 expression and the ferroptosis signaling pathway. Arch. Biochem. Biophys. 715, 109087. https://doi.org/10.1016/j.abb.2021.109087
  19. Louis, D.N., Perry, A., Wesseling, P., Brat, D.J., Cree, I.A., Figarella-Branger, D., Hawkins, C., Ng, H.K., Pfister, S.M., Reifenberger, G., et al. (2021). The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol. 23, 1231-1251. https://doi.org/10.1093/neuonc/noab106
  20. Maier, A.D., Stenman, A., Svahn, F., Mirian, C., Bartek, J., Jr., Juhler, M., Zedenius, J., Broholm, H., and Mathiesen, T. (2021). TERT promoter mutations in primary and secondary WHO grade III meningioma. Brain Pathol. 31, 61-69. https://doi.org/10.1111/bpa.12892
  21. Mawrin, C. and Perry, A. (2010). Pathological classification and molecular genetics of meningiomas. J. Neurooncol. 99, 379-391. https://doi.org/10.1007/s11060-010-0342-2
  22. Mei, D., Song, H., Wang, K., Lou, Y., Sun, W., Liu, Z., Ding, X., and Guo, J. (2013). Up-regulation of SUMO1 pseudogene 3 (SUMO1P3) in gastric cancer and its clinical association. Med. Oncol. 30, 709. https://doi.org/10.1007/s12032-013-0709-2
  23. Mirian, C., Duun-Henriksen, A.K., Juratli, T., Sahm, F., Spiegl-Kreinecker, S., Peyre, M., Biczok, A., Tonn, J.C., Goutagny, S., Bertero, L., et al. (2020). Poor prognosis associated with TERT gene alterations in meningioma is independent of the WHO classification: an individual patient data meta-analysis. J. Neurol. Neurosurg. Psychiatry 91, 378-387. https://doi.org/10.1136/jnnp-2019-322257
  24. Monleon, D., Morales, J.M., Gonzalez-Segura, A., Gonzalez-Darder, J.M., Gil-Benso, R., Cerda-Nicolas, M., and Lopez-Gines, C. (2010). Metabolic aggressiveness in benign meningiomas with chromosomal instabilities. Cancer Res. 70, 8426-8434. https://doi.org/10.1158/0008-5472.CAN-10-1498
  25. Nassiri, F., Wang, J.Z., Singh, O., Karimi, S., Dalcourt, T., Ijad, N., Pirouzmand, N., Ng, H.K., Saladino, A., Pollo, B., et al. (2021). Loss of H3K27me3 in meningiomas. Neuro Oncol. 23, 1282-1291. https://doi.org/10.1093/neuonc/noab036
  26. Nieto, M.A. (2002). The snail superfamily of zinc-finger transcription factors. Nat. Rev. Mol. Cell Biol. 3, 155-166. https://doi.org/10.1038/nrm757
  27. Perry, A. (2018). Meningiomas. In Practical Surgical Neuropathology: A Diagnostic Approach (Second Edition), A. Perry and D.J. Brat, eds. (Philadelphia, USA: Elsevier), pp. 259-298.
  28. Prager, B.C., Vasudevan, H.N., Dixit, D., Bernatchez, J.A., Wu, Q., Wallace, L.C., Bhargava, S., Lee, D., King, B.H., Morton, A.R., et al. (2020). The meningioma enhancer landscape delineates novel subgroups and drives druggable dependencies. Cancer Discov. 10, 1722-1741. https://doi.org/10.1158/2159-8290.cd-20-0160
  29. Prensner, J.R., Iyer, M.K., Balbin, O.A., Dhanasekaran, S.M., Cao, Q., Brenner, J.C., Laxman, B., Asangani, I.A., Grasso, C.S., Kominsky, H.D., et al. (2011). Transcriptome sequencing across a prostate cancer cohort identifies PCAT-1, an unannotated lincRNA implicated in disease progression. Nat. Biotechnol. 29, 742-749. https://doi.org/10.1038/nbt.1914
  30. Qiu, M.T., Hu, J.W., Yin, R., and Xu, L. (2013). Long noncoding RNA: an emerging paradigm of cancer research. Tumour Biol. 34, 613-620. https://doi.org/10.1007/s13277-013-0658-6
  31. Riemenschneider, M.J., Perry, A., and Reifenberger, G. (2006). Histological classification and molecular genetics of meningiomas. Lancet Neurol. 5, 1045-1054. https://doi.org/10.1016/S1474-4422(06)70625-1
  32. Robert, S.M., Vetsa, S., Nadar, A., Vasandani, S., Youngblood, M.W., Gorelick, E., Jin, L., Marianayanam, N., Erson-Omay, E.Z., Gunel, M., et al. (2022). The integrated multiomic diagnosis of sporadic meningiomas: a review of its clinical implications. J. Neurooncol. 156, 205-214. https://doi.org/10.1007/s11060-021-03874-9
  33. Shukal, D., Bhadresha, K., Shastri, B., Mehta, D., Vasavada, A., and Johar, K., Sr. (2020). Dichloroacetate prevents TGFβ-induced epithelial-mesenchymal transition of retinal pigment epithelial cells. Exp. Eye Res. 197, 108072. https://doi.org/10.1016/j.exer.2020.108072
  34. Sievers, P., Sill, M., Blume, C., Tauziede-Espariat, A., Schrimpf, D., Stichel, D., Reuss, D.E., Dogan, H., Hartmann, C., Mawrin, C., et al. (2021). Clear cell meningiomas are defined by a highly distinct DNA methylation profile and mutations in SMARCE1. Acta Neuropathol. 141, 281-290. https://doi.org/10.1007/s00401-020-02247-2
  35. Singh, D., Deshmukh, R.K., and Das, A. (2021). SNAI1-mediated transcriptional regulation of epithelial-to-mesenchymal transition genes in breast cancer stem cells. Cell. Signal. 87, 110151. https://doi.org/10.1016/j.cellsig.2021.110151
  36. Suppiah, S., Nassiri, F., Bi, W.L., Dunn, I.F., Hanemann, C.O., Horbinski, C.M., Hashizume, R., James, C.D., Mawrin, C., Noushmehr, H., et al. (2019). Molecular and translational advances in meningiomas. Neuro Oncol. 21(Suppl 1), i4-i17. https://doi.org/10.1093/neuonc/noy178
  37. Tang, H., Zhu, H., Wang, X., Hua, L., Li, J., Xie, Q., Chen, X., Zhang, T., and Gong, Y. (2017). KLF4 is a tumor suppressor in anaplastic meningioma stem-like cells and human meningiomas. J. Mol. Cell Biol. 9, 315-324. https://doi.org/10.1093/jmcb/mjx023
  38. Tang, L., Chen, Y., Chen, H., Jiang, P., Yan, L., Mo, D., Tang, X., and Yan, F. (2020). DCST1-AS1 promotes TGF-β-induced epithelial-mesenchymal transition and enhances chemoresistance in triple-negative breast cancer cells via ANXA1. Front. Oncol. 10, 280. https://doi.org/10.3389/fonc.2020.00280
  39. Tano, K., Mizuno, R., Okada, T., Rakwal, R., Shibato, J., Masuo, Y., Ijiri, K., and Akimitsu, N. (2010). MALAT-1 enhances cell motility of lung adenocarcinoma cells by influencing the expression of motility-related genes. FEBS Lett. 584, 4575-4580. https://doi.org/10.1016/j.febslet.2010.10.008
  40. Tummalapalli, P., Gond, C.S., Dinh, D.H., Gujrati, M., and Rao, J.S. (2007). RNA interference-mediated targeting of urokinase plasminogen activator receptor and matrix metalloproteinase-9 gene expression in the IOMM-Lee malignant meningioma cell line inhibits tumor growth, tumor cell invasion and angiogenesis. Int. J. Oncol. 31, 5-17.
  41. Wang, D.J., Xie, Q., Gong, Y., Mao, Y., Wang, Y., Cheng, H.X., Zhong, P., Che, X.M., Jiang, C.C., Huang, F.P., et al. (2013). Histopathological classification and location of consecutively operated meningiomas at a single institution in China from 2001 to 2010. Chin. Med. J. (Engl.) 126, 488-493. https://doi.org/10.3760/cma.j.issn.0366-6999.20122874
  42. Wang, H., Chirshev, E., Hojo, N., Suzuki, T., Bertucci, A., Pierce, M., Perry, C., Wang, R., Zink, J., Glackin, C.A., et al. (2021a). The epithelial-mesenchymal transcription factor SNAI1 represses transcription of the tumor suppressor miRNA let-7 in cancer. Cancers (Basel) 13, 1469. https://doi.org/10.3390/cancers13061469
  43. Wang, L., Wang, L., and Wang, Q. (2021b). Constitutive activation of the NEAT1/miR-22-3p/Ltb4r1 signaling pathway in mice with myocardial injury following acute myocardial infarction. Aging (Albany N.Y.) 13, 15307-15319.
  44. Wu, P., Mo, Y., Peng, M., Tang, T., Zhong, Y., Deng, X., Xiong, F., Guo, C., Wu, X., Li, Y., et al. (2020). Emerging role of tumor-related functional peptides encoded by lncRNA and circRNA. Mol. Cancer 19, 22. https://doi.org/10.1186/s12943-020-1147-3
  45. Xing, H., Wang, S., Li, Q., Ma, Y., and Sun, P. (2018). Long noncoding RNA LINC00460 targets miR-539/MMP-9 to promote meningioma progression and metastasis. Biomed. Pharmacother. 105, 677-682. https://doi.org/10.1016/j.biopha.2018.06.005
  46. Yin, D., Hu, Z.Q., Luo, C.B., Wang, X.Y., Xin, H.Y., Sun, R.Q., Wang, P.C., Li, J., Fan, J., Zhou, Z.J., et al. (2021). LINC01133 promotes hepatocellular carcinoma progression by sponging miR-199a-5p and activating annexin A2. Clin. Transl. Med. 11, e409.
  47. Zada, S., Hwang, J.S., Ahmed, M., Lai, T.H., Pham, T.M., Elashkar, O., and Kim, D.R. (2021). Cross talk between autophagy and oncogenic signaling pathways and implications for cancer therapy. Biochim. Biophys. Acta Rev. Cancer 1876, 188565. https://doi.org/10.1016/j.bbcan.2021.188565
  48. Zhang, Q., Song, L.R., Huo, X.L., Wang, L., Zhang, G.B., Hao, S.Y., Jia, H.W., Kong, C.L., Jia, W., Wu, Z., et al. (2020a). MicroRNA-221/222 inhibits the radiation-induced invasiveness and promotes the radiosensitivity of malignant meningioma cells. Front. Oncol. 10, 1441. https://doi.org/10.3389/fonc.2020.01441
  49. Zhang, Y., Han, P., Guo, Q., Hao, Y., Qi, Y., Xin, M., Zhang, Y., Cui, B., and Wang, P. (2021). Oncogenic landscape of somatic mutations perturbing pan-cancer lncRNA-ceRNA regulation. Front. Cell Dev. Biol. 9, 658346. https://doi.org/10.3389/fcell.2021.658346
  50. Zhang, Y., Yu, R., Li, Q., Li, Y., Xuan, T., Cao, S., and Zheng, J. (2020b). SNHG1/miR-556-5p/TCF12 feedback loop enhances the tumorigenesis of meningioma through Wnt signaling pathway. J. Cell. Biochem. 121, 1880-1889. https://doi.org/10.1002/jcb.29423
  51. Zheng, J., Pang, C.H., Du, W., Wang, L., Sun, L.G., and Xing, Z.Y. (2020). An allele of rs619586 polymorphism in MALAT1 alters the invasiveness of meningioma via modulating the expression of collagen type V alpha (COL5A1). J. Cell. Mol. Med. 24, 10223-10232. https://doi.org/10.1111/jcmm.15637
  52. Zhu, S., Wang, J.Z., Chen, D., He, Y.T., Meng, N., Chen, M., Lu, R.X., Chen, X.H., Zhang, X.L., and Yan, G.R. (2020). An oncopeptide regulates m(6) A recognition by the m(6)A reader IGF2BP1 and tumorigenesis. Nat. Commun. 11, 1685. https://doi.org/10.1038/s41467-020-15403-9