• Title/Summary/Keyword: P 파 속도

Search Result 219, Processing Time 0.025 seconds

Numerical studies of information about elastic parameter sets in non-linear elastic wavefield inversion schemes (비선형 탄성파 파동장 역산 방법에서 탄성파 변수 세트에 관한 정보의 수치적 연구)

  • Sakai, Akio
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.1
    • /
    • pp.1-18
    • /
    • 2007
  • Non-linear elastic wavefield inversion is a powerful method for estimating elastic parameters for physical constraints that determine subsurface rock and properties. Here, I introduce six elastic-wave velocity models by reconstructing elastic-wave velocity variations from real data and a 2D elastic-wave velocity model. Reflection seismic data information is often decoupled into short and long wavelength components. The local search method has difficulty in estimating the longer wavelength velocity if the starting model is far from the true model, and source frequencies are then changed from lower to higher bands (as in the 'frequency-cascade scheme') to estimate model elastic parameters. Elastic parameters are inverted at each inversion step ('simultaneous mode') with a starting model of linear P- and S-wave velocity trends with depth. Elastic parameters are also derived by inversion in three other modes - using a P- and S-wave velocity basis $('V_P\;V_S\;mode')$; P-impedance and Poisson's ratio basis $('I_P\;Poisson\;mode')$; and P- and S-impedance $('I_P\;I_S\;mode')$. Density values are updated at each elastic inversion step under three assumptions in each mode. By evaluating the accuracy of the inversion for each parameter set for elastic models, it can be concluded that there is no specific difference between the inversion results for the $V_P\;V_S$ mode and the $I_P$ Poisson mode. The same conclusion is expected for the $I_P\;I_S$ mode, too. This gives us a sound basis for full wavelength elastic wavefield inversion.

Development of Torsional Shear Testing System to Measure P-wave Velocity, S-wave Velocity and Pore Water Pressure Buildup on Fully and Partially Saturated Sands (포화 및 부분 포화 사질토의 Vp와 Vs 속도 및 과잉간극수압 측정을 위한 비틂전단 시험기의 개발)

  • Kim, Dong-Soo;Lee, Sei-Hyun;Choo, Yun-Wook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.1
    • /
    • pp.55-66
    • /
    • 2006
  • Laboratory tests have revealed that the liquefaction resistance of sands depends strongly upon the degree of saturation, which is expressed in terms of the pore pressure coefficient, B. The velocity of compression waves(i.e. P-waves), which have been known to be influenced largely by the degree of saturation and can be measured conveniently in the field, appears as an indicator of saturation. In this paper, the Stokoe type torsional shear(TS) testing equipment is modified to saturate the specimen and measure the velocities of P-wave and S-wave and pore pressure buildup. The velocities of P-wave and S-wave for Toyoura sand from Japan is measured and compared at the various B-value (degree of saturation) which are partially saturated to fully saturated conditions. Additionally, the variation of the pore water pressure induced during undrained TS tests at the various B-value is measured and analyzed.

  • PDF

Laboratory study of $CO_2$ migration in water-saturated anisotropic sandstone, based on P-wave velocity imaging (P-파 속도 영상화에 근거한 물로 포화된 이방성 사암에서의 $CO_2$ 이동에 관한 실험 연구)

  • Xue, Ziqiu;Lei, Xinglin
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.1
    • /
    • pp.10-18
    • /
    • 2006
  • We measured the changes in P-wave velocity that occur when injecting $CO_2$ in gaseous, liquid, and supercritical phases into water-saturated anisotropic sandstones. P-wave velocities were measured in two cylindrical samples of Tako Sandstone, drilled along directions normal and parallel to the bedding plane, using a piezo-electric transducer array system. The velocity changes caused by $CO_2$ injection are typically -6% on average, with maximum values about -16% for the case of supercritical $CO_2$ injection. P-wave velocity tomograms obtained by the differential arrival-time method clearly show that $CO_2$ migration behaviour is more complex when $CO_2$ flows normal to the bedding plane than when it flows parallel to bedding. We also found that the differences in P-wave velocity images were associated both with the $CO_2$ phases and with heterogeneity of pore distribution in the rocks. Seismic images showed that the highest velocity reduction occurred for supercritical $CO_2$ injection, compared with gaseous or liquid $CO_$ injection. This result may justify the use of the seismic method for $CO_2$ monitoring in geological sequestration.

A Study on the Characteristics of Dynamic Elastic Modulus in GyeongGi Gneiss Complex by Down Hole Test (하향식 탄성파를 통한 경기 편마암의 동탄성 특성연구)

  • Lee, Byok-Kyu;Lee, Su-Gon
    • The Journal of Engineering Geology
    • /
    • v.18 no.4
    • /
    • pp.371-379
    • /
    • 2008
  • In this study, seismic elastic wave and dynamic elastic modulus properties are investigated by down-hole seismic tests that were applied to the 11 gneiss area. The research results show that the realtionship between the two properties are $V_s=0.5589{\times}V_p$ in gneiss. The relationship between the two properties are separated into two groups. Group 1 is influenced mainly by the specific gravity of rock, but group 2 is influenced mainly by the joint aperture. As weathering progresses, group 1 clearly shows a decreasing tendency. In fresh and slightly weathered rock-mass, correlations between $V_p$ and dynamic elastic modulus is expressed in linear line but in moderately-highly weathered rock-mass, correlations between $V_p$ and dynamic elastic modulus is expressed curve as a quadratic function. Correlations between $V_s$ and dynamic elastic modulus are analyzed similar with a $V_p$ case.

An Experimental Investigation of the Variations of the Elastic Wave Velocities with Compaction Energy for Railway Roadbed Materials (다짐 에너지를 고려한 노반 성토 재료의 탄성파 속도 변화의 실험적 분석)

  • Kim, Hak-Sung;Jung, Young-Hoon;Mok, Young-Jin;Lee, Jin-Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.1037-1047
    • /
    • 2013
  • A systematic laboratory compaction testing was performed with the laboratory seismic measurements of the compacted specimens sampled from various compaction fills and was supplemented with in-situ seismic testing to investigate the effects of compaction energy on the elastic wave velocities of the railway roadbed materials. The both variances of the compressive and shear wave velocities with moisture content curve ($V_p$-w and $V_s$-w curves) are similar to the general trend of the density-moisture content curve(${\gamma}_d$-w curve). At the wet side of optimal moisture content (OMC), either $V_p$ or $V_s$ does not significantly increase, which is well reflecting the no gaining in density with the increasing compaction energy exceeding modified-D compaction effort. $V_p$ increases linearly with ${\gamma}_d$ at the dry side of OMC, while it does exponentially at the wet side. The in-situ wave velocities were found to be influenced by the level of confinement and $V_s$ was more sensitive to compaction energy than $V_p$.

P-wave Velocity Analysis Around the BSR Using Wide-angle Ocean-bottom Seismic Data (해저면 광각 탄성파 탐사자료를 이용한 BSR 부근의 P파 속도 분석)

  • Kim, Byoung-Yeop;Byun, Joong-Moo
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.2
    • /
    • pp.173-182
    • /
    • 2009
  • In April 2008, KIGAM carried out an ocean-bottom seismometer (OBS) survey in the central Ulleung Basin where strong bottom simulating reflectors (BSRs) were revealed from previous surveys and some gas-hydrate samples were retrieved by direct sampling. The purpose of this survey is to estimate the velocity structure near the BSR in the gas hydrate prospect area using wide-angle seismic data recorded on the ocean-bottom seismometers. Along with the OBS survey, a 2-D seismic survey was performed whereby stratigraphic and preliminary velocity information was obtained. Two methods were applied to wide-angle data for estimating P wave velocity; one is velocity analysis in the $\tau$-p domain and the other is seismic traveltime inversion. A 1-D interval velocity profile was obtained by the first method, which was refined to layered velocity structure by the latter method. A layer stripping method was adopted for modeling and inversion. All velocity profiles at each OBS site clearly show velocity reversal at BSR depths due to the presence of gas hydrates. In addition, we could confirm high velocity in the column/chimney structure.

Assessment of Rockmass Damage around a Tunnel Using P Wave Velocity Tomography (P파 속도 토모그래피를 이용한 터널 주변의 암반손상 평가)

  • Park, Chul-Soo;SaGong, Myung;Mok, Young-Jin;Kim, Dae-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.11
    • /
    • pp.53-60
    • /
    • 2009
  • Construction of a tunnel induces rock masses damage around the tunnel. The degree of damage produced on rock masses will affect on the mechanical and hydraulic behaviors of the rock masses. In this paper, P wave velocity measured by cross-hole test was used to assess rock masses damage around the test tunnel. Initiation of source signal was carried out using mechanical impact at the source installed borehole. In consequence, the generated P wave signal was low noise and apparent wave form, which allows accurate pick-up of first arrival time. From the test, the region where rock damage is expected shows relatively low P wave velocity. In addition, with multiple points of P wave velocity measurement along each cross-hole, two dimensional P wave tomography was obtained. The tomography provides apparent view of the rock damage behind the tunnel. The measured P wave velocity was correlated with features of rock masses, porosity and Q value.

Comparison of Shear-wave Velocity Sections from Inverting SH-wave Traveltimes of First Arrivals and Surface Wave Dispersion Curves (SH파 초동주시 역산과 표면파 분산곡선 역산으로부터 구한 횡파속도 단면 비교)

  • Lee, Chang-Min;Kim, Ki-Young
    • Journal of the Korean Geophysical Society
    • /
    • v.8 no.2
    • /
    • pp.67-74
    • /
    • 2005
  • Two-dimensional S-wave velocity sections from SH-wave refraction tomography and surface wave dispersions were obtained by inverting traveltimes of first arrivals and surface wave dispersions, respectively. For the purpose of comparison, a P-wave velocity tomogram was also obtained from a P-wave refraction profiling. P and Rayleigh waves generated by vertical blows on a plate with a sledgehammer were received by 100- and 4.5-Hz geophones, respectively. SH-waves generated by horizontal blows on both sides of a 50 kg timber were received by 8 Hz horizontal geophones. The shear-wave signals were enhanced subtracting data of left-side blows from ones of the right-side blows. Shear-wave velocities from tomography inversion of first-arrival times were compared with ones from inverting dispersion curves of Rayleigh waves. Although the two velocity sections look similar to each other in general, the one from the surface waves tends to have lower velocities. First arrival picking of SH waves is troublesome since P and PS-converted waves arrive earlier than SH waves. Application of the surface wave method, on the other hand, is limited where lateral variation of subsurface tructures is not mild.

  • PDF

Seismic Velocity Change Due to Micro-crack Accumulation of Rock Samples from Seokmo Island, Korea (손상 진행에 따른 석모도 암석 시험편의 탄성파속도 변화)

  • Lee, Sang-Kyu;Choi, Ji-Hyang;Cheon, Dae-Sung;Lee, Tae-Jong
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.4
    • /
    • pp.324-334
    • /
    • 2011
  • Seismic wave velocity change has been monitored due to the accumulation of micro-cracks by uniaxial loads on the rock samples from Seokmo Island with stepwise increase in 5 stages. After the load was applied up to 95% of UCS, P- and S-wave velocities varied in ranges of 0.9 ~ 18.3% and 2.8 ~ 14.8% of fresh rock sample velocities, respectively. Unlike seismic velocity of the dry rock samples that showed overall decreases after the loading, velocity changes of saturated rock samples were much more complicated. These seemed to be due to the mixture of two contradictory mechanisms; i.e. accumulation of micro-crack causes an increase in porosity and a decrease in wave velocity, while saturation causes an increase in wave velocity. Most of tested rocks showed a trend of velocity increase with low axial load and then velocity decrease at later stages. Starting stage of velocity decrease differs from samples to samples. After the failure of rock occurred, noticeable increases of porosity and decreases of wave velocity have been observed. It showed overall trend that the more the quartz contents and the lower the silicate, the higher the Young's modulus.

A study on the Factors Affected on the P- and S-wave Velocity Measurement of the Acrylic and Stainless Steel Core (아크릴 및 스테인리스강 시험편의 P-, S-파 속도 산출에 미친 영향 요인 고찰)

  • Lee, Sang-Kyu;Lee, Tae-Jong
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.4
    • /
    • pp.305-315
    • /
    • 2011
  • A total of 864 measurements for P- and S- wave velocity of acrylic and stainless steel core samples have been performed with respect to their lengths and axial load applied. S-wave velocity measurement was much harder than P-wave velocity, so that it showed higher deviation in measured S-wave velocity with respect to repeated measurement, length of the cores, and the axial load applied. Velocity measurements for acrylic cores showed more stable and less than half of the variation between the measurements than the stainless steel cores. This seems to be come from better coupling between the transducers and acrylic cores than stainless cores, and from larger value of the first arrival time in a similar system noise environments. From the analysis of the 864 measurements, it is recommended that the length of the core be 60 ~ 90 mm, axial load between 20 kg (27.7 $N/cm^2$) and 30 kg (41.6 $N/cm^2$) for measurement of wave velocity of the acrylic and stainless steel cores. Especially for measuring S-wave velocity of stainless steel core, core length should be less than 50 mm, otherwise it will be affected by mode conversion or others. These results can be used in measurement and correction for system delay in wave velocity measurement for rock cores.