P-wave Velocity Analysis Around the BSR Using Wide-angle Ocean-bottom Seismic Data

해저면 광각 탄성파 탐사자료를 이용한 BSR 부근의 P파 속도 분석

  • Kim, Byoung-Yeop (Petroleum and Marine Resources Division, Korea Institute of Geoscience & Mineral Resources) ;
  • Byun, Joong-Moo (Department of Geoenvironmental System Engineering, Hanyang University)
  • 김병엽 (한국지질자원연구원 석유해저연구본부) ;
  • 변중무 (한양대학교 공과대학 지구환경시스템공학과)
  • Published : 2009.05.28

Abstract

In April 2008, KIGAM carried out an ocean-bottom seismometer (OBS) survey in the central Ulleung Basin where strong bottom simulating reflectors (BSRs) were revealed from previous surveys and some gas-hydrate samples were retrieved by direct sampling. The purpose of this survey is to estimate the velocity structure near the BSR in the gas hydrate prospect area using wide-angle seismic data recorded on the ocean-bottom seismometers. Along with the OBS survey, a 2-D seismic survey was performed whereby stratigraphic and preliminary velocity information was obtained. Two methods were applied to wide-angle data for estimating P wave velocity; one is velocity analysis in the $\tau$-p domain and the other is seismic traveltime inversion. A 1-D interval velocity profile was obtained by the first method, which was refined to layered velocity structure by the latter method. A layer stripping method was adopted for modeling and inversion. All velocity profiles at each OBS site clearly show velocity reversal at BSR depths due to the presence of gas hydrates. In addition, we could confirm high velocity in the column/chimney structure.

2008년 4월, 한국지질자원연구원은 동해 울릉분지 내에 있는 가스하이드레이트 유망지역을 대상으로 OBS를 이용하여 광각 탄성파 탐사를 실시하였다. 이 탐사는 광각 탄성파 자료를 통해 가스하이드레이트 부존 심도에서의 2차원 탄성파 속도 분포를 규명하기 위한 것으로서, 탐사지역의 층서구조와 기본 속도구조 도출을 위해 64채널 스트리머를 사용한 2차원 탄성파 반사법 탐사도 동시에 수행하였다. 취득한 광각 반사파 자료는 $\tau$-p 분석을 통해 각각의 OBS가 위치한 지점에서의 1차원 구간속도를 구하고 이렇게 구한 속도모델은 최종 속도 분포를 도출하기위해 사용된 탄성파 주시 역산법을 적용하는데 있어서 빠른 수렴을 위한 초기 속도 모델로 활용하였다. 초기 층서 모델은 2차원 반사법 탐사에서 얻은 중합자료를 바탕으로 작성하였고 최상위층에서부터 하위층으로 순차적으로 모델링 및 역산을 수행하는 layer stripping 방식으로 최종 속도 모델을 도출하였다. 본 연구를 통해 탐사지역의 가스하이드레이트 존재로 인한 BSR 위아래 층의 속도 역전현상 뿐만 아니라 컬럼/침니 구조에서의 속도가 주변보다 높음을 확인할 수 있었다.

Keywords

References

  1. 김길영, 유동근, 김원식, 이호영, 박근필, 2008, LWD/MWD를 이용한 동해 울릉분지 가스하이드레이트 탐사, 물리탐사, 11, 263-270
  2. 한국지질자원연구원, 2007, 가스하이드레이트 지구물리탐사 연구 1단계 최종보고서
  3. Bessonova, E. N., Fishman, V. M., Ryaboyi, V. Z. and Stinikova, G. A., 1794, The tau method for inversion of travel time-I. Deep seismic sounding data, Geophys. J. R. Astr. Soc., 36, 377-398
  4. $B\ddot unz$, S., Mienert, J., Vanneste, M. and Andreassen, K., 2005, Gas hydrate at the Storegga Slide: Constraints from an analysis of multicomponent, wide-angle seismic data, Geophysics, 70, B19-B34
  5. Diebold, J. B. and Stoffa, P. L., 1981, The traveltime equation, tau-p mapping, and inversion of common midpoint data, Geophysics, 46, 238-254
  6. Holbrook, W. S., Hoskins, H., Wood, W. T., Stephen, R. A., Lizarralde, D. and Party, L. S., 1996, Methane hydrate and free gas on Blake Ridge from vertical seismic profiling, Science, 273, 1840-1843
  7. Iyer, H. M. and Hirahara, K., 1993, Seismic Tomography, Chapman & Hall, 733
  8. Jaiswal, P., Zelt, C. A. and Pecher, I. A., 2006, Seismic charac-terization of a gas hydrate system in the Gulf of Mexico using wide-aperture data, Geophys. J. Int., 165, 108-120
  9. Lee, H. Y., Park, K. P., Yoo, D. G., Koo, N. H., Kim, W. S., Kim, B. Y., Kang, D. H. and Kim, H. J., 2008, Geophysical activity of gas hydrate exploration in Korea, Proceedings of the 6th International Conference on Gas Hydrate (ICGH 2008)
  10. Max, M. D., Johnson, A. H. and Dillon, W. P., 2006, Economic Geology of Natural Gas Hydrate, Springer, 45-46
  11. Medwind, H. 1975, Speed of Sound In Water: A Simple Equation for Realistic Parameters. The Journal of the Acoustical Society of America, 58, 1318-1319
  12. Park, K. P., 2008, Gas hydrate exploration activities in Korea, Proceedings of the 6th International Conference on Gas Hydrate (ICGH 2008)
  13. Petersen, C. J., Papenberg, C. and Klaeschen, D., 2007, Local seismic quantification of gas hydrates and BSR characterization from multi-frequency OBS data at northern Hydrate Ridge, Earth and Planetary Science Letters, 255, 414-431
  14. Sheriff, R. E., 2002, Encyclopedic Dictionary of Applied Geo-physics, 4th Ed., Series Editor: Scherrer E. F., SEG
  15. Shipley, T. H., Houston, M. H., Bufer, R. T., Shaub, F. J., McMillen, K. J., Ladd, J. W. and Worzel, J. L, 1979, Seismic evidence for widespread possible gas hydrate horizon continental slopes and rises, AAPG Bull., 63, 2204-2231
  16. Sloan, E. D. JR., 1998, Physical/chemical properties of gas hydrates and application to world margin stability and climatic change, In: Henriet J. P. and Mienert J. (eds) Gas Hydrates: Relevance to World Margin Stability and Climate Change, Geological Society, London, Special Publication, 137, 31
  17. Spence, G. D., Minshull, T. A. and Fink, C., 1995, Seismic studies of methane gas hydrate, offshore Vancouver Island, Proceedings of the Ocean Drilling Program, Scientific Results, 146, 163-172
  18. Tinivella, U. and Accaino, F., 2000, Compressional velocity structure and Poisson's ratio in marine sediments with gas hydrate and free gas by inversion of reflected and refracted seismic data(South Shetland Islands, Antarctica), Marine Geology, 164, 13-27
  19. Tinivella, U., Lodolo, E., Camerlenghi, A. and Boehm, G., 1998, Seismic tomography study of a bottom simulating reflector off the South Shetland Islands (Antarctica), In:Henriet J. P. and Mienert J.(eds) Gas Hydrates: Relevance to World Margin Stability and Climate Change, Geological Society, London, Special Publication, 137, 151
  20. Yilmaz, O., 2001, Seismic data analysis: Processing, Inversion and Interpretation of Seismic Data: 2nd Ed., Society of Exploration Geophysicists, Tulsa
  21. Zelt, C. A., 1999, Modelling strategies and model assessment for wide-angle seismic travetime data, Geophys. J. Int., 139, 183-204
  22. Zelt, C. A. and Smith, R. B., 1992, Seismic traveltime inversion of 2-D crustal velocity structure, Geophys. J. Int., 108, 16-34