Numerical studies of information about elastic parameter sets in non-linear elastic wavefield inversion schemes

비선형 탄성파 파동장 역산 방법에서 탄성파 변수 세트에 관한 정보의 수치적 연구

  • Published : 2007.02.28

Abstract

Non-linear elastic wavefield inversion is a powerful method for estimating elastic parameters for physical constraints that determine subsurface rock and properties. Here, I introduce six elastic-wave velocity models by reconstructing elastic-wave velocity variations from real data and a 2D elastic-wave velocity model. Reflection seismic data information is often decoupled into short and long wavelength components. The local search method has difficulty in estimating the longer wavelength velocity if the starting model is far from the true model, and source frequencies are then changed from lower to higher bands (as in the 'frequency-cascade scheme') to estimate model elastic parameters. Elastic parameters are inverted at each inversion step ('simultaneous mode') with a starting model of linear P- and S-wave velocity trends with depth. Elastic parameters are also derived by inversion in three other modes - using a P- and S-wave velocity basis $('V_P\;V_S\;mode')$; P-impedance and Poisson's ratio basis $('I_P\;Poisson\;mode')$; and P- and S-impedance $('I_P\;I_S\;mode')$. Density values are updated at each elastic inversion step under three assumptions in each mode. By evaluating the accuracy of the inversion for each parameter set for elastic models, it can be concluded that there is no specific difference between the inversion results for the $V_P\;V_S$ mode and the $I_P$ Poisson mode. The same conclusion is expected for the $I_P\;I_S$ mode, too. This gives us a sound basis for full wavelength elastic wavefield inversion.

비선형 파동장 역산은 지하의 암석과 물성을 결정하는 물리적인 제약을 위한 탄성파 변수들을 평가하는데 강력한 방법이다. 이 논문에서는 현장자료와 2 차원 탄성파 속도 모델로부터 탄성파 속도 변화를 재구성하여 만들어낸 6 가지 탄성파 속도 모드를 제시하였다. 탄성파 반사파 자료의 정보는 종종 단파장과 장파장 성분으로 나뉘어진다. 지역검색 방법은 만약 초기모델이 실제 모델로부터 동떨어지면 장파장의 속도 변화를 측정하는데 어렵다. 그러면 송신주파수들은 낮은 대역에서 더 높은 대역들로 모델의 탄성파 변수들을 측정하기 위해 변환된다 (frequency-cascade scheme) 탄성파 변수들은 P 파와 S 파 속도가 섬도에 따라 선형으로 변화는 초기 모델 가정하에 각 역산단계에서 (simultaneous mode) 계산된다. P 파와 S 파 속도 $('V_P\;V_S\;mode')$, P 파 임피던스와 포와송 비 $('I_P\;Poisson\;mode')$, P 파와 S 파 임피던스 $('I_P\;I_S\;mode')$와 같은 세가지 모드들이 탄성파 변수들의 역산을 위해 얻어진다. 각 탄성파 역산 단계에서 밀도값들은 세가지 가정하에 개선(update)된다. 탄성파 모델을 위한 각 변수 세트들에서 역산의 정확도를 평가한 결과 $V_P\;V_S$ 모드와 $I_P$ Poisson 모드 사이에 별다른 역산 차이는 없었다. $I_P\;I_S$ 모드들에 대해서도 같은 결론이 예상된다. 이러한 결과들은 전 파장에 걸친 탄성파 파동장 역산의 견고한 기초를 제공한다.

Keywords

References

  1. Akaike, H., 1974, New look at statistical-model identification: IEEE Transactions on Automatic Control 19, 716-723. doi: 10.1109/TAC.1974.1100705
  2. Arts, R. O., Eiken, A., Chadwick, P., Zweigel, P., van der Meer, L., and Zinszner, B., 2002, Monitoring of CO2 injected at Sleipner using time lapse seismic data: Proceedings of GHGT-6, Kyoto, 347-352
  3. Bunks, C., Saleck, F. M., Zaleski, S., and Chavent, G., 1995, Multiscale seismic waveform inversion: Geophysics 60, 1457-1473. doi: 10.11901 1.1443880 https://doi.org/10.1190/1.1443880
  4. Claerbout, J. F., 1985, Imaging of the Earth's Interior: Blackwell
  5. Crase, E., Pica, A., Noble, M., McDonald, J., and Tarantola, A., 1990, Robust elastic nonlinear waveform inversion: Application to real data: Geophysics 55, 527-538. doi: 10.1190/1.1442864
  6. Debski, W., and Tarantola, A., 1995, Infonnation on elastic parameters obtained from the amplitudes of reflected waves: Geophysics 60, 1426-1436. doi: 10.1190/1.1443877
  7. Dvorkin, J., Prasad, M., Sakai, A., and Lavoie, D., 1999, Elasticity of marine sediments: Rock physics modelling: Geophysical Research Letters 26, 1781-1784. doi: 10.1029/1999GL900332
  8. Gardner, G. H. F., Gardner, L. W., and Gregory, A. R., 1974, Fonnation velocity and density: The diagnostic basis for stratigraphic traps: Geophysics 39,770-780. doi: 10.1190/1.1440465
  9. Hamilton, E. L., 1978, Sound velocity-density relations in sea-floor sediments and rocks: The Journal of the Acoustical Society of America 63,366-377. doi: 10.1121/1.381747
  10. Igel, H., Djikpesse, H., and Tarantola, A., 1996, Waveform inversion of marine reflection seismograms for P impedance and Poisson's ratio: Geophysical Journal International 124, 363-371 https://doi.org/10.1111/j.1365-246X.1996.tb07026.x
  11. Kennett, B. L. N., and Williamson, P. R., 1987, Subspace methods for large scale nonlinear inversion: In Vlaar, N. J., Nolet, G., Wortel, M. J. R., and Cloetingh, S. A. P. L. (eds). Mathematical Geophysics: A survey of recent developments in seismology and geodynamics, Reidel
  12. Kolb, P., Collino, F., and Lailly, P., 1986, Pre-stack inversion of a 1-D medium: Proceedings of the IEEE, 74,498-508
  13. Lailly, P., 1983, The seismic inverse problem as a sequence of before stack migrations: In Bednar, J. B., Redner, R., Robinson, E., and Weglein, A., (eds). Conference on Inverse Scattering: Theory and Applications, Society of Industrial and Applied Mathematics
  14. Levander, A., 1988, Fourth-order finite-difference P-SV seismograms: Geophysics, 53, 1425-1437. doi: 10.1190/1.1442422
  15. Mora, P., 1987, Non-linear two-dimensional elastic inversion of multioffset seismic data: Geophysics, 52, 1211-1228. doi: 10.1190/1.1442384
  16. Mora, P., 1988, Elastic wavefield inversion of reflection and transmission data: Geophysics 53, 750-759. doi: 10.1190/1.1442510
  17. Mora, P., 1989, Inversion = migration + tomography: Geophysics 54, 1575-1586. doi: 10.1190/1.1442625
  18. Pica, P., Diet, J. P., and Tarantola, A., 1990, Nonlinear inversion of seismic reflection data in a laterally invariant medium: Geophysics 55, 284-292. doi: 10.1190/1.1442836
  19. Sakai, A., 1998, Broad-band seismic data acquisitions for fine scale imaging and velocity detennination associated with BSR: Proceeding of the 23rd General Assembly of the European Geophysical Society, in SE48 Gas Hydrates in Nature: Results from geophysical and geochemical studies
  20. Sakai, A., 1999, Velocity analysis of vertical seismic profile (VSP) survey at JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well, and related problems for estimating gas hydrate concentration: Geological Survey of Canada Bulletin 544, 323-340
  21. Sakai, A., 2000, Seismic studies by 2D high resolution and reconstructed quasi-3D data combined with VSPs in the eastern Nankai Trough: Proceedings of AGU Western Pacific Geophysical Meeting, in EOS, AGU Transactions 81, 22, WP60
  22. Sakai, A., 2002, Velocity estimates by the nonlinear elastic wavefield inversion method: Proceeding of the 107th SEGJ Conference, 47-50
  23. Sakai, A., 2003, Frequency-cascade scheme to the elastic wavefield inversion: A strategy for low wavenumber velocity estimate and several applications: Proceedings of the International Symposium on Recent Advances in Exploration Geophysics, 12-21
  24. Sirgue, L., and Pratt, R. G., 2001, Frequency domain waveform inversion: strategy for choosing frequencies: Proceedings of the 63rd EAGE Conference, POI4
  25. Tarantola, A., 1984, Inversion of seismic reflection data in the acoustic approximation: Geophysics 49, 1259-1266. doi: 10.1190/1.1441754
  26. Tarantola, A., 1986, A strategy for nonlinear elastic inversion of seismic reflection data: Geophysics 51,1893-1903. doi: 10.1190/1.1442046
  27. Tarantola, A., 1987, Inverse Problem Theory - Methods for data fitting and model parameter estimation, Elsevier