Multi-station joint inversion of receiver function and surface-wave phase velocity data for exploration of deep sedimentary layers

심부 퇴적층 탐사를 위한 수신함수와 표면파 위상속도를 이용한 다측점 자료의 복합 역산

  • Kurose, Takeshi (Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology) ;
  • Yamanaka, Hiroaki (Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology)
  • Published : 2007.02.28

Abstract

In this study, we propose a joint inversion method, using genetic algorithms, to estimate an S-wave velocity structure for deep sedimentary layers from receiver functions and surface-wave phase velocity observed at several sites. The method takes layer continuity over a target area into consideration by assuming that each layer has uniform physical properties, especially an S-wave velocity, at all the sites in a target area in order to invert datasets acquired at different sites simultaneously. Numerical experiments with synthetic data indicate that the proposed method is effective in reducing uncertainty in deep structure parameters when modelling only surface-wave dispersion data over a limited period range. We then apply the method to receiver functions derived from earthquake records at one site and two datasets of Rayleigh-wave phase velocity obtained from microtremor array surveys performed in central Tokyo, Japan. The estimated subsurface structure is in good agreement with the results of previous seismic refraction surveys and deep borehole data. We also conclude that the proposed method can provide a more accurate and reliable model than individual inversions of either receiver function data only or surface-wave dispersion data only.

이 연구에서는 심부 퇴적층의 S-파 속도구조 추정을 위하여 여러 지점에서 획득된 수신함수와 표면파 위상속도 자료를 이용하는 유전자 알고리즘 기반 복합 역산기법을 제안하였다. 이 방법은 서로 다른 지점에서 획득된 자료를 동시에 역산하기 위해, 역산대상 지역 내 모든 측점 상부의 지층 물성 - 특히 S-파 속도 -이 균열하다고 가정하는 방식으로 역산대상 지역 상부층의 층서적 연속성을 고려한다. 인공합성 자료를 이용한 수치실험 결과, 본 방법은 제한된 주기대역을 가지는 표면파 위상속도 자료만을 모델링 할 때 발생하는 심부 지층 물성정보에 대한 불확실성을 효과적으로 줄일 수 있음을 보여주었다. 또한 본 연구에서는 한 지점에서 획득된 지진파 기록으로부터 구해진 수선함수와, 일본 동경 중부지역에서 수행된 미소진동탐사로부터 획득된 두 개의 레일리파 위상속도 자료에 대해 제안된 기법을 적용하였다. 그 결과, 추정된 지하 구조는 선행된 탄성파 굴절법 탐사와 심부 시추공 자료와 잘 일치하는 양상을 보여주었다. 이러한 측면에서, 제안된 방법은 수신함수만을, 흑은 표면파 위상속도 자료만을 이용하는 개별역산에 비해 보다 정확하고 신뢰할 수 있는 모델을 제공하는 방법이 될 수 있을 것으로 판단된다.

Keywords

References

  1. Ammon, C. J., Randall, G. R., Zandt, G., 1990, On the nonuniqueness of receiver function inversion: Journal of Geophysical Research 95, 15303-15318 https://doi.org/10.1029/JB095iB10p15303
  2. Chang, S.-J., Baag, C.-E., Langston, C. A., 2004, Joint analysis of teleseismic receiver function and surface wave dispersion using genetic algorithm: Bulletin of the Seismological Society of America 94, 691-704. doi: 10.1785/0120030110
  3. Cho, I., Nakanishi, I., Ling, S., Okada, H., 1999, Application of Forking Genetic Algorithm fGA to an exploration method using microtremors: Geophysical Exploration (Butsuri-Tansa) 52, 227-246
  4. Darbyshire, F. A., Priestley, K. F., White, R. S., Stefansson, R., Gudmundsson, G. B., Jakobsdottir, S. S., 2000, Crustal structure of central and northern Iceland from analysis of teleseismic receiver functions: Geophysical Journal International 143, 163-184. doi: 10.1 046/j.1365-246x.2000.00224.x https://doi.org/10.1046/j.1365-246x.2000.00224.x
  5. Feng, S., Sugiyama, T., Yamanaka, H., 2003, Multi-station inversion in array microtremor survey: Geophysical Exploration (Butsuri- Tansa) 56, 1-11
  6. Haskell, N. A., 1953, The dispersion of surface waves in multilayered media: Bulletin of the Seismological Society of America 43, 17-34
  7. Haskell, N. A., 1962, Crustal reflection of plane P and SV waves: Journal of Geophysical Research 67, 4751-4767 https://doi.org/10.1029/JZ067i012p04751
  8. Horike, M., 1985, Inversion of phase velocity oflong-period microtremors to the S wave velocity structure down to the basement in urbanized areas: Journal of Physics of the Earth 33, 59-96 https://doi.org/10.4294/jpe1952.33.59
  9. Julia, J., Ammon, C. J., Herrmann, R. B., Correig, A. M., 2000, Joint inversion of receiver function and surface wave dispersion observations: Geophysical Journal International 143, 99-112. doi:10.1046/j.1365- 246x.2000.00217.x
  10. Kagawa, T., Sawada, S., Iwasaki, Y., Nanjo, A., 1998, S-wave velocity structure model of the Osaka sedimentary basin from microtremor array observations: Journal of the Seismological Society of Japan (Zisin) 51, 31-40
  11. Kitsunezaki, C., Goto, N., Kobayashi, Y., Ikawa, T., Horike, M., Saito, T., Kurota, T., Yamane, K., Okuzumi, K., 1990, Estimation of P- and S-wave velocities in deep soil deposits for evaluating ground vibrations in earthquake: Journal of Natural Disaster Science 9(3),1-17
  12. Kobayashi, K., Uetake, T., Mashimo, M., Kobayashi, H., 1998, An investigation on detection method of P to S converted waves for estimating deep underground structures: Journal of Structural and Construction Engineering 505, 45-52
  13. Koketsu, K., 1995, Underground structure in the Tokyo metropolitan area: Geophysical Exploration (Butsuri- Tansa) 48, 504-518
  14. Kurose, T., Yamanaka, H., 2006, Joint inversion of receiver function and surface-wave phase velocity for estimation of shear-wave velocity of sedimentary layers: Geophysical Exploration (Butsuri-Tansa) 59, 93-101
  15. Langston, C. A., 1979, Structure under Mount Rainier, Washington, inferred from teleseismic bodywaves: Journal of Geophysical Research 84, 4749-4762 https://doi.org/10.1029/JB084iB09p04749
  16. Last, R. J., Nyblade, A. A., Langston, C. A., Owens, T. J., 1997, Crustal structure of the East African Plateau from receiver functions and Rayleigh wave phase velocities: Journal of Geophysical Research 102, 24469-24483. doi: 10.1029/97JB02156
  17. Lomax, A., Snieder, R., 1994, Finding of acceptable solutions with a genetic algorithm with application of surface wave group velocity dispersion in Europe: Geophysical Research Letters 21, 2617-2620. doi: 10.1 029/94GL02635 https://doi.org/10.1029/94GL02635
  18. Okada, H., 2003, The microtremor survey method, Society of Exploration Geophysicists
  19. Owens, T. J., Zandt, G., Taylor, S. R., 1984, Seismic evidence for an ancient rift beneath the Cumberland Plateau, Tennessee: A detailed analysis of broadband teleseismic P waveforms: Journal of Geophysical Research 89,7783-7795 https://doi.org/10.1029/JB089iB09p07783
  20. Priestley, K. F., Zandt, G., Randall, G. E., 1988, Crustal structure in Eastern Kazakh, U.S.S.R. from teleseismic receiver function: Geophysical Research Letters 15, 613-616 https://doi.org/10.1029/GL015i006p00613
  21. Suzuki, H., 1999, Deep geological structure and seismic activity in the Tokyo metropolitan area: Journal of Geography 108, 336-339 https://doi.org/10.5026/jgeography.108.336
  22. Yamanaka, H., Furuya, S., Nozawa, T., Sasaki, T., Takai, T., 1995, Array measurements of long-period microtremors in the Kanto Plain - Estimation of S-wave velocity structure at Koto: Journal of Structural and Construction Engineering 478,99-105
  23. Yamanaka, H., Ishida, H., 1996, Application of genetic algorithms to an inversion of surface-wave dispersion data: Bulletin of the Seismological Society of America 86, 436-444
  24. Yamanaka, H., Yamada, N., 2002, Estimation of 3D S-wave velocity model of deep sedimentary layers in Kanto plain, Japan, using microtremor array measurements: Geophysical Exploration (Butsuri-Tansa) 55, 53-65