• Title/Summary/Keyword: 위상속도

Search Result 653, Processing Time 0.031 seconds

Correlations of Phase Velocities of Guided Ultrasonic Waves with Cortical Thickness in Bovine Tibia (소의 경골에서 유도초음파의 위상속도와 피질골 두께 사이의 상관관계)

  • Lee, Kang-Il
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.1
    • /
    • pp.56-62
    • /
    • 2011
  • In the present study, the phase velocities of guided ultrasonic waves such as the first arriving signal (FAS) and the slow guided wave (SGW) propagating along the long axis on the 12 tubular cortical bone samples in vitro were measured and their correlations with the cortical thickness were investigated. The phase velocities of the FAS and the SGW were measured by using the axial transmission method in air with a pair of unfocused ultrasonic transducers with a diameter of 12.7 mm and a center frequency of 200 kHz. The phase velocity of the FAS measured at 200 kHz exhibited a very high negative correlation with the cortical thickness and that of the SGW arriving after the FAS showed a high positive correlation with the cortical thickness. The simple and multiple linear regression models with the phase velocities of the FAS and the SGW as independent variables and the cortical thickness as a dependent variable revealed that the coefficient of determination of the multiple linear regression model was higher than those of the simple linear regression models. The phase velocities of the FAS and the SGW measured at 200 kHz on the 12 tubular cortical bone samples were, respectively, consistent with those of the S0 and the A0 Lamb modes calculated at 200 kHz on the cortical bone plate.

Linear Shallow Water Equations for Waves with Damping (파랑 에너지 감쇠가 있는 경우의 선형천수방정식)

  • Jung, Tae-Hwa;Lee, Chang-Hoon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.1
    • /
    • pp.10-15
    • /
    • 2012
  • Wave characteristics in the presence of energy damping are investigated using the linear shallow water equations. To get the phase and energy velocities, geometric optics approach is used and then these values are validated through numerical experiments. Energy damping affects wave height, phase and energy velocities which result in wave transformation. When the complex wavenumber is used by the Eulerian approach, it is found that the phase velocity decreases as the damping increases while the energy velocity increases showing higher values than the phase velocity. When the complex angular frequency is used by the Lagrangian approach, the energy-damping wave group is found to propagate in the energy velocity. The energy velocity is found to affect shoaling and refraction coefficient which is verified through numerical experiments for waves on a plane slope.

Frequency-Wave Number Method for the Automated Calculation of the Phase Velocities from the SASW Measurements (SASW실험 분산곡선의 자동화 계산을 위한 주파수-파수 기법)

  • 조성호;강태호
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.299-310
    • /
    • 2003
  • In the evaluation of the subgrade stiffness structure by the SASW method, the calculation of the phase velocities is the important task controlling the reliability of the result. The interpretation of the phase spectrum should precede the phase-velocity calculation in the current practice of the SASW method. The difficulty involved in the interpretation prohibited the SASW method from being spread over to the industry. This study proposed a new method called the frequency-wave number technique, which is based on the frequency-wave number relationship of the surface wave in the multi-layered system. The frequency-wave number technique eliminates the expertise in the interpretation of the phase spectrum, automates the phase-velocity calculation and expedites the determination of the phase-velocity dispersion curve. To verify the validity of the proposed frequency-wave number method, the transfer function determined from the numerical simulation of the SASW measurements was used fir the calculation of the automatic calculation of the phase velocities and compared with the phase velocities by WinSASW employing the phase-unwrapping method. Also, the proposed method was applied to the real SASW measurements performed at$\bigcirc$$\bigcirc$area in GyeongGi-Do to see how the proposed method works with the real measurements.

A Study of the comparison of Inversion of Rayleigh wave Group and Phase Velocities for Regional Near-Surface 2-Dimensional Velocity Structure (천부지각 2차원 속도구조를 위한 레일리파의 군속도와 위상속도 역산의 비교 연구)

  • Lee, Bo-Ra;Jung, Hee-Ok
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.51-59
    • /
    • 2006
  • The surface wave data obtained in a tidal flat located in the sw coast of the Korean Peninsula were used to analyse the shear wave velocity structure of the area. First, the phase velocity dispersion curves were obtained by the tau-p stacking method and the group velocity dispersion curves by a wavelet transform method and the Multiple Filtering Technique by Dziewonski. The phase velocity dispersion curves exhibited bigger errors than the group velocity curves. The results showed that the wavelet transform method was more effective in separating the fundamental and the 1st higher mode group velocity curves than the Multiple Filtering Technique. Combined use of the fundamental and the 1st higher mode group velocity dispersion curves in the inversion for the shear wave velocity structure gave better spatial resolution compared when the fundamental mode group velocity was used alone. This study indicates that the group velocity dispersion curves can be used in the inversion of Rayleigh waves for the shear wave velocity structure, especially effectively with the higher mode group velocity curves together.

  • PDF

Dependencies of phase velocities of ultrasonic guided waves on cortical thickness in soft tissue-bone mimicking phantoms (연조직-골 모사 팬텀에서 피질골 두께에 대한 유도초음파 위상속도의 의존성)

  • Lee, Kang Il
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.6
    • /
    • pp.587-592
    • /
    • 2021
  • Change in the cortical thickness of long bones occurring with aging and osteoporosis is known to be a risk factor for fracture. The present study aims to investigate the dependencies of phase velocities of ultrasonic guided waves on the cortical thickness in 7 soft tissue-bone mimicking phantoms consisting of acrylic plates covered by a 2 mm-thick silicone rubber layer by using the axial transmission technique with a pair of transducers with a center frequency of 200 kHz and a diameter of 12.7 mm. Two distinct propagating waves with different velocities, the First Arriving Signal (FAS) and the Slow Guided Waved (SGW), were consistently observed for all the soft tissue-bone mimicking phantoms. The FAS velocity decreased slightly with increasing thickness, whereas the SGW velocity increased strongly with increasing thickness. The FAS and the SGW velocities were found to be closely consistent with the S0 and the A0 Lamb mode velocities for a free acrylic plate, respectively, suggesting that the presence of the soft tissue mimicking material (2 mm-thick silicone rubber layer) covering the acrylic plates does not influence significantly the velocity measurements.

Phase-Difference Control of Ultrasonic Motor (초음파 모터의 위상차 제어)

  • 김영동;오금곤
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.10 no.1
    • /
    • pp.66-74
    • /
    • 1996
  • 최근 진행파형 초음파 모터는 그 구조가 간단하고, 저속 고 토크이어서 직접 구동()용으로 많은 호응을 얻고 있다. 또한 응답이 빠르고, 정지 토크가 크며 설계자유도가 높을 뿐만 아니라 운전시 소음이 없고 자계에 강해 자동화 설비 분야 등 산업 전반에 걸쳐 매우 각광을 받고 있다. 본 논문에서는 초음파 모터의 2상 입력전원의 위상차를 조절하여 속도와 토크 특성을 이론적으로 고찰하고, 이를 토대로 위상차 제어기를 설계 제작하였다. 그리고 이를 이용하여 위상차 제어방식을 채용한 경우 초음파 모터의 위치 및 속도제어는 물론 간단한 알고리즘으로 토크 제어가 가능함을 시뮬레이션과 실험을 통하여 검토하였다. 실험 결과 위상차 변화에 따라 속도가 토크가 거의 비례해서 변화하였다. 이것으로 전원 전압의 위상차 조절을 통해서 속도와 토크를 동시에 제어할 수 있을 뿐만 아니라 토크센서 없이 각도 센선 만으로도 위치제어는 물론 토크 제어도 큰 오차 없이 행할 수 있음을 밝혔다.

  • PDF

Multi-station joint inversion of receiver function and surface-wave phase velocity data for exploration of deep sedimentary layers (심부 퇴적층 탐사를 위한 수신함수와 표면파 위상속도를 이용한 다측점 자료의 복합 역산)

  • Kurose, Takeshi;Yamanaka, Hiroaki
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.1
    • /
    • pp.19-28
    • /
    • 2007
  • In this study, we propose a joint inversion method, using genetic algorithms, to estimate an S-wave velocity structure for deep sedimentary layers from receiver functions and surface-wave phase velocity observed at several sites. The method takes layer continuity over a target area into consideration by assuming that each layer has uniform physical properties, especially an S-wave velocity, at all the sites in a target area in order to invert datasets acquired at different sites simultaneously. Numerical experiments with synthetic data indicate that the proposed method is effective in reducing uncertainty in deep structure parameters when modelling only surface-wave dispersion data over a limited period range. We then apply the method to receiver functions derived from earthquake records at one site and two datasets of Rayleigh-wave phase velocity obtained from microtremor array surveys performed in central Tokyo, Japan. The estimated subsurface structure is in good agreement with the results of previous seismic refraction surveys and deep borehole data. We also conclude that the proposed method can provide a more accurate and reliable model than individual inversions of either receiver function data only or surface-wave dispersion data only.

The S-wave Velocity Structure of Shallow Subsurface Obtained by Continuous Wavelet Transform of Short Period Rayleigh Waves (Continuous Wavelet Transform을 단주기 레일리파에 적용하여 구한 천부지반 S파 속도구조)

  • Jung, Hee-Ok;Lee, Bo-Ra
    • Journal of the Korean earth science society
    • /
    • v.28 no.7
    • /
    • pp.903-913
    • /
    • 2007
  • In this study, the researchers compared the S-wave velocity structures obtained by two kinds of dispersion curves: phase and group dispersions from a tidal flat located in the SW coast of the Korean peninsula. The ${\tau}-p$ stacking method was used for the phase velocity and two different methods (multiple filtering technique: MFT and continuous wavelet transform: CWT) for the phase velocity. It was difficult to separate higher modes from the fundamental mode phase velocities using the ${\tau}-p$ method, whereas the separation of different modes of group velocity were easily achieved by both MFT and CWT. Of the two methods, CWT was found to be more efficient than MFT. The spatial resolutions for the inversion results of the fundamental mode for both phase and group velocities were good for only a very shallow depth of ${\sim}1.5m$. On the other hand, the spatial resolutions were good up to ${\sim}4m$ when both the fundamental and the 1st higher mode poop velocities obtained by CWT were used for S-wave inversion. This implies that the 1st higher mode Rayleigh waves contain more information on the S-wave velocity in deeper subsurface. The researchers applied the CWT method to obtain the fundamental and the 1st higher mode poop velocities of the S-wave velocity structure of a tidal flat located in SW coast of the Korean peninsula. Thea the S-wave velocity structures were compared with the borehole description of the study area.

Rayleigh-wave Phase Velocities and Spectral Amplitudes Affected by Insertion of an Anomalous Velocity Layer in the Overburden (천부 속도이상층이 레일리파 위상속도 및 수직변위 스펙트럼 진폭에 미치는 영향)

  • Kim, Ki Young;Jung, Jinhoon
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.4
    • /
    • pp.155-162
    • /
    • 2012
  • The Thomsen-Haskell method was used to determine sensitivities of the Rayleigh-wave phase velocities and spectral amplitude of vertical ground motion to insertion of a single velocity-anomaly layer into overburden underlain by a basement. The reference model comprised a 9-m thick overburden with shear-wave velocity (${\nu}_s$ of 300 m/s above a half-space with ${\nu}_s$ = 1000 m/s. The inserted layer, with a velocity of 150, 225, 375, or 450 m/s and a thickness of 1, 2, or 3 m, was placed at depths increasing from the surface in increments of 1 m. Phase velocities were computed for frequencies of 4 to 30 Hz. For inserted layer models, we placed an anomalous layer with thickness of 1 ~ 3 m, shear-wave velocity of 150 ~ 450 m/s, and at depths of 0 ~ 8 m in the overburden. The frequency range of 8 ~ 20 Hz were the most sensitive to the difference of $C_R$ between the inserted and reference models (${\Delta}C_R$) for h = 1 m and the frequency range got wide as h increased. For all of the models, the spectral amplitudes of the fundamental mode exceeded those of the $1^{st}$-higher mode except at frequencies just above the low-frequency cutoff of the $1^{st}$-higher mode.

Estimation of Structural Properties from the Measurements of Phase Velocity and Attenuation Coefficient in Trabecular Bone (해면질골에서 위상속도 및 감쇠계수 측정에 의한 구조적 특성 평가)

  • Lee, Kang-Il
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.7
    • /
    • pp.661-667
    • /
    • 2009
  • Trabecular-bone-mimicking phantoms consisting of parallel-nylon-wire arrays were used to investigate correlations of phase velocity and attenuation coefficient with structural properties in trabecular bone. Trabecular separation (Tb.Sp) of the 7 trabecular-bone-mimicking phantoms ranged from 300 to $900\;{\mu}m$ and volume fraction (VF) from 1.6% to 8.7%. Phase velocity and attenuation coefficient of the phantoms were measured by using a through-transmission method in water, with a matched pair of broadband unfocused transducers with a diameter of 12.7 mm and a center frequency of 1 MHz. Phase velocity and attenuation coefficient at 1 MHz decreased almost linearly with increasing Tb. Sp and increased almost linearly with increasing VF. The simple and multiple linear regression models with phase velocity and attenuation coefficient as independent vanables and Tb.Sp and VF as dependent variables demonstrated that the coefficients of determination for the prediction of VF were higher than those for the prediction of Tb.Sp. The results obtained in the trabecular-bone-mimicking phantoms consisting of parallel-nylon-wire arrays were consistent with those in human trabecular bone suggesting that the structural properties can be estimated from the measurements of phase velocity and attenuation coefficient in trabecular bone.