DOI QR코드

DOI QR Code

Assessment of Rockmass Damage around a Tunnel Using P Wave Velocity Tomography

P파 속도 토모그래피를 이용한 터널 주변의 암반손상 평가

  • 박철수 (한국철도기술연구원 철도구조연구실) ;
  • 사공명 (한국철도기술연구원 철도구조연구실) ;
  • 목영진 (경희대학교 토목건축대학) ;
  • 김대영 (현대건설 기술품질개발원)
  • Published : 2009.11.30

Abstract

Construction of a tunnel induces rock masses damage around the tunnel. The degree of damage produced on rock masses will affect on the mechanical and hydraulic behaviors of the rock masses. In this paper, P wave velocity measured by cross-hole test was used to assess rock masses damage around the test tunnel. Initiation of source signal was carried out using mechanical impact at the source installed borehole. In consequence, the generated P wave signal was low noise and apparent wave form, which allows accurate pick-up of first arrival time. From the test, the region where rock damage is expected shows relatively low P wave velocity. In addition, with multiple points of P wave velocity measurement along each cross-hole, two dimensional P wave tomography was obtained. The tomography provides apparent view of the rock damage behind the tunnel. The measured P wave velocity was correlated with features of rock masses, porosity and Q value.

터널의 시공은 항상 주변 암반의 손상을 초래한다. 발생하는 손상의 정도는 주변암반의 역학적 및 수리학적 거동에 영향을 미친다. 본 논문에서는 크로스홀 시험을 통하여 P 파 속도를 측정하여 터널주변 암반의 손상을 계측하였다. 발진공에서의 탄성파 신호발생을 위하여 기계적인 충격을 가하였으며 그 결과로 발생된 P파 신호는 잡음이 적으며 파의 초동 도달시간 판별이 용이하였다. 실험결과 암반의 손상이 예상되는 구간에서 P 파의 속도가 낮게 검측 되었다. 크로스홀 공 내 다중의 지점에서 P 파 계측을 수행하여 이차원 P 파 토모그래피를 생성하였는데, 생성된 토모그래피는 터널 배면의 암반 손상이 발생한 구간에 대한 가시적인 결과를 나타내었다. 측정된 P파의 속도로부터 간극율 또는 Q 값과의 상관관계를 통해 암반 특성의 정량적인 손상 평가가 가능하였다.

Keywords

References

  1. 목영진, 백영식, 임수빈 (1998), "탄성파 시험을 이용한 그라우팅 성과 평가", 한국지반공학회 봄학술발표회 논문집, pp.85-92
  2. 정연문, 이명성, 송명준, 우익, 이영남 (1996), "지오레이다 토모그래피를 이용한 굴착에 의한 암반물성 변화에 관한 연구", 한국지반공학회 1996 가을학술발표회 논문집, pp.115-122
  3. Balland, C., Morel, l., Armand, G., and Pettitt, W. (2009), "Ultrasoinc velocity survey in Callovo-Oxfordian argillaceous rock during shaft excavation", international Journal of Rock Mechanics and Mining Sciences, Vol.46, pp.69-79 https://doi.org/10.1016/j.ijrmms.2008.03.011
  4. Barton, N. (2002), "Some new Q value correlations to assist in site characterization and tunnel design", International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstract, Vol.39, pp.185-216 https://doi.org/10.1016/S1365-1609(02)00011-4
  5. Carranza-Torres, c., and Diederichs, M (2009), "Mechanical analysis of circular linters with particular reference to composite supports. For example, liners consisting of shotcrete and steel sets", Tunnelling and Underground Space Technology, Vol.24, pp.506-532 https://doi.org/10.1016/j.tust.2009.02.001
  6. Carranza-Torres, C., and Fairhurst, C. (1999), "The elasto-plastic response of underground excavations in rock masses that satisfy the Hoek-Brown failure criterion", International Journal of Rock Mechanics and Mining Sciences, Vol.36, pp.777-809 https://doi.org/10.1016/S0148-9062(99)00047-9
  7. Falls S. D., and Young, R. P. (1998), "Acoustic emission and ultrasonic-velocity methods used to characterise the excavation disturbance associated with deep tunnels in hard rock", Tectonophysics, Vol.289, pp.1-15 https://doi.org/10.1016/S0040-1951(97)00303-X
  8. Fahimifar, A., and Ranjbamia, M (2009), "Analytical approach for the design of active grouted rockbolts in tunnel stability based on convergence-confinement method", Tunnelling and Underground Space Technology, Vol.24, pp.363-375 https://doi.org/10.1016/j.tust.2008.10.005
  9. Fuhriman, M. D. (1993), Crosshole Seismic Tests at Two Northern California Sites Affected by the i989 Lorna Prieta Earthquake, Master Thesis, The University of Texas at Austin
  10. Hoar, R. J., Stokoe, K. H. II. (1978), "Generation and Measurement of Shear Wave in situ," Dynamic Geotechnical Testing, ASTM STP 654, ASTM, pp.3-29
  11. Martin, C. D., Read, R. S., and Martino, J. B. (1997), "Observations of brittle failure around a circular test tunnel," International Journal of Rock Mechanics and Mining Sciences, Vol.34, No.7, pp.1065-1073 https://doi.org/10.1016/S1365-1609(97)90200-8
  12. Martino, J. B., and Chandler, N. A. (2004), "Excavation-induced damage studies at the Underground Research Laboratory", International Journal of Rock Mechanics and Mining Sciences, Vol.41, pp.1413-1426 https://doi.org/10.1016/j.ijrmms.2004.09.010
  13. Meglis I. L., Martin C. D., and Young, R. P. (2005), "Assessing in situ microcrack damage using ultrasonic velocity tomography", International Journal of Rock Mechanics and Mining Sciences, Vol.42, pp.25-34 https://doi.org/10.1016/j.ijrmms.2004.06.002
  14. Mok, Y. J. (1987), Analytical and Experimental Studies of Borehole Seismic Methods, Ph. D. Dissertation, The University of Texas at Austin
  15. Park, K. H., and Kim, Y. J. (2006), "Analytical solution for a circular opening in an elastic-brittle-plastic rock", International Journal of Rock Mechanics and Mining Sciences, Vol.43, pp.616-622 https://doi.org/10.1016/j.ijrmms.2005.11.004
  16. Park, C. S., Lim, l. Y., Choi, C. L., Kong, B. C., and Mok, Y. J. (2008), "Recent Development of Borehole Seismic Tests", Proceeding of The 14th World Conference on Earthquake Engineering (CD-ROM), October 12-17, 2008, Beijing, China
  17. Roblee, C. J. (1990), Development and Evaluation of a Tomographic Seismic Imaging Techniques for Characterization of Geotechnical Sites, Ph. D. Dissertation, The University of Texas at Austin, pp.680
  18. Sousa, L. M. O., del Rio, L. M. S., Calleja, L., de Argandona, V. G. R. and Rey, A. R. (2005), "Influence of microfractures and porosity on the physico-mechanical properties and weathering of ornamental granites", Engineering Geology, Vol.77, pp.153-168 https://doi.org/10.1016/j.enggeo.2004.10.001
  19. Tronicke, J., Tweeton, D. R., Dietrich, P., and Appel, E. (2001), "Improved Crosshole Radar Tomography by using Direct and Reflected Arrival Times", Applied Geophysics, Vol.47, pp.97-1005 https://doi.org/10.1016/S0926-9851(01)00050-7
  20. Tweeton, D. R., Jackson, M. J., and Roessler, K. S. (1992), BOMCRATRA-A Curved Ray Tomography Computer Program for Geophysical Application, USBM RI 9411