• Title/Summary/Keyword: Oxygen exposure

Search Result 593, Processing Time 0.068 seconds

Molecular and Genomic Approaches on Nickel Toxicity and Carcinogenicity

  • Seo, Young-Rok;Kim, Byung-Joo;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.2
    • /
    • pp.73-77
    • /
    • 2005
  • Nickel is the one of potent environmental, the occupational pollutants and the classified human carcinogens. It is a serious hazard to human health, when the metal exposure. To prevent human diseases from the heavy metals, it is seemingly important that understanding of how nickel exerts their toxicity and carcinogenic effect at a molecular and a genomic level. The process of nickel absorption has been demonstrated as phagocytosis, iron channel and diffusion. Uptaked nickel has been suggested to induce carcinogenesis via two pathways, a direct DNA damaging pathway and an indirect DNA damaging pathway. The former was originated from the ability of metal to generate Reactive Oxygen Species (ROS) and the reactive intermediates to interact with DNA directly. Ni-generated ROS or Nickel itself, interacts with DNAs and histones to cause DNA damage and chromosomal abnormality. The latter was originated from an indirect DNA damage via inhibition of DNA repair, or condensation and methylation of DNA. Cells have ability to protect from the genotoxic stresses by changing gene expression. Microarray analysis of the cells treated with nickel or nickel compounds, show the specific altered gene expression profile. For example, HIF-I (Hypoxia-Inducible Factor I) and p53 were well known as transcription factors, which are upregulated in response to stress and activated by both soluble and insoluble nickel compounds. The induction of these important transcription factors exert potent selective pressure and leading to cell transformation. Genes of metallothionein and family of heat shock proteins which have been known to play role in protection and damage control, were also induced by nickel treatment. These gene expressions may give us a clue to understand of the carcinogenesis mechanism of nickel. Further discussions on molecular and genomic, are need in order to understand the specific mechanism of nickel toxicity and carcinogenicity.

Changes in Antioxidant Enzyme Activity and Physiological Responses to Cadmium and Tributyltin Exposure in the Ark Shell, Scapharca Broughtonii

  • An, Myung-In;An, Kwang-Wook;Choi, Cheol-Young
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.4
    • /
    • pp.273-282
    • /
    • 2009
  • Cadmium (Cd) and tributyltin (TBT) are common contaminants of marine and freshwater ecosystems, and can induce the formation of reactive oxygen species (ROS). These ROS can, in turn, cause oxidative stress. In the present study, we investigated time-related effects of Cd (0.05 and 0.1 ppm) and TBT (5 and 10 ppb) treatment on antioxidant enzyme activity, i.e., the activity of superoxide dismutase (SOD) and catalase (CAT) in the gills and digestive glands of the ark shell, Scapharca broughtonii. In addition, hydrogen peroxide ($H_2O_2$) concentrations, lysozyme activity, and glutamate oxaloacetate transaminase (GOT) and glutamate pyruvate transaminase (GPT) levels were measured in the hemolymph. We found that Cd and TBT treatment significantly increased antioxidant enzyme mRNA expression and activity in the digestive glands and gills in a time-dependent manner. In response to the Cd and TBT treatments, antioxidant enzymes mRNA expression and activity increased up to day 5 in the digestive glands and then decreased by day 7. In the gills, antioxidant enzymes mRNA expression and activity increased up to day 3 and then decreased by day 5. Likewise, $H_2O_2$ concentrations significantly increased up to day 5 and then decreased by day 7. Finally, lysozyme activity decreased during the experimental period, whereas GOT and GPT levels were significantly increased in a time-dependent manner. These results suggest that antioxidant enzymes play an important role in decreasing ROS levels and oxidative stress in ark shells exposed to Cd and TBT.

Research and Application for Natural Extract That Contain Ultraviolet Rays Absorbent Ingredient (자외선 흡수 활성 성분을 함유한 천연추출물에 대한 연구와 응용)

  • 김경동
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.1
    • /
    • pp.117-122
    • /
    • 2004
  • Exessive UV radiation causes a lot of problems in our skin. In order to find out the alternative UV absorber that can safely be used in cosmetics, we have screened various natural extracts in terms of their UV absorbing effect. Some natural extracts, which possess antioxidative activities, have also been found to retard the oxidation process in our experiment. Natural compound such as 7-hydroxycymopol, baicalein, etc. could be transformed into adjuvant UV absorber by chemical modification. In cosmetics, its chemical stability against UV radiation, exposure to oxygen and other factors could be improved by using the silicone or W/S type emulsion. The values of MED (minimal erythema dose) were improved to 0.10 ${\pm}$ 0.02∼0.11 ${\pm}$ 0.02 by adding this natural extract into the cosmetic formulations. In conclusion, the results of the present study show that natural extracts could be used as an adjuvant UV absorber, if they are stabilized.

Symptom of Leaf Injury and Varietal Difference to Ozone in Rice and Soybean Plant (벼와 콩의 오존 피해증상과 품종간 차이)

  • Lee, Jong-Ta;Sohn, Jae-Keun
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.2
    • /
    • pp.154-159
    • /
    • 2000
  • This study was carried out to elucidate the symptom of leaf injury to ozone and to determine varietal difference to ozone injury in rice and soybean plant. Ozone was produced by electrostatic discharge in oxygen and was monitored by UV absorption ozone analyzer. The rice leaves were spotted red and rolling leaf edge, discolored to reddish brown or yellowish white in response to ozone, and the leaves that were severely stressed were withered from the tip of leaf. The soybean ones were also discolored to lemon yellow, yellow or dark brown. The leaf injury in both rice and soybean was clearly appeared at the reverse side of leaf and in lower leaves. Milyang 23 and Nonganbyeo among rice cultivars tested were resistant to ozone, but Chucheongbyeo was resistant to it. The ratio of leaf injury was increased and chlorophyll content was decreased as the extension of ozone exposure from 2 to 8 hours in rice. Keunolkong and Danyeopkong among soybean cultivars tested showed resistant reaction to ozone, but Kwangankong and Muhankong were susceptible to it. It was observed that the soybean plants grown for 45 days after seeding were severely damaged by ozone than those of other growth stages.

  • PDF

Protective Effects of Cornu Saigae Tataricae Extracts on Cultured Spinal Motor Neurons Damaged by Oxygen Free Radical (산소자유기에 의한 척수운동세포 독성에 대한 영양각 추출물의 방어효과)

  • Kang Gil Seong;Kwon Kang Beom;Ryu Do Gon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.5
    • /
    • pp.1202-1207
    • /
    • 2003
  • In order to clarify the neuroprotective effect of Cornu Saigae Tataricae(CST) water extract on cultured mouse spinal motor neuron damaged by hydrogen peroxide (H₂O₂), MTT [3-(4,5-dimethylthiazole-2-yl)- 2,5-diphenyltetrazolium bromide] assay, LDH (Lactate Dehydrogenase) activity assay and SRB (Sulforhodamine B) assay were carried out after the cultured mouse spinal motor neuron were preincubated with various concentrations of CST water extract for 3 hours prior to exposure of hydrogen peroxide Cell viability of cultured mouse spinal motor neurons exposed to various concentrations of hydrogen peroxide for 6 hours was decreased in a dose-dependent manner. MTT50 values were 40 uM hydrogen peroxide. Cultured mouse spinal motor neurons in the medium containing various concentration of hydrogen peroxide for 6 hours showed increasing of LDH activity and decreasing of total protein synthesis. We know that hydrogen peroxide was toxic on cultured spinal motor neurons. Pretreatment of CST water extract for 3 hours following hydrogen peroxide prevented the hydrogen peroxide-induced neurotoxicity such as increasing of LDH activity and decreasing of total protein synthesis. These results suggest that hydrogen peroxide shows toxic effect on cultured spinal motor neurons and CST water extract is highly effective in protecting the neurotoxicity induced by hydrogen peroxide.

Direct Analysis in Real Time Mass Spectrometry (DART-MS) Analysis of Skin Metabolome Changes in the Ultraviolet B-Induced Mice

  • Park, Hye Min;Kim, Hye Jin;Jang, Young Pyo;Kim, Sun Yeou
    • Biomolecules & Therapeutics
    • /
    • v.21 no.6
    • /
    • pp.470-475
    • /
    • 2013
  • Ultraviolet (UV) radiation is a major environmental factor that leads to acute and chronic reactions in the human skin. UV exposure induces wrinkle formation, DNA damage, and generation of reactive oxygen species (ROS). Most mechanistic studies of skin physiology and pharmacology related with UV-irradiated skin have focused on proteins and their related gene expression or single-targeted small molecules. The present study identified and analyzed the alteration of skin metabolites following UVB irradiation and topical retinyl palmitate (RP, 5%) treatment in hairless mice using direct analysis in real time (DART) time-of-flight mass spectrometry (TOF-MS) with multivariate analysis. Under the negative ion mode, the DART ion source successfully ionized various fatty acids including palmitoleic and linolenic acid. From DART-TOF-MS fingerprints measured in positive mode, the prominent dehydrated ion peak (m/z: 369, M+H-$H_2O$) of cholesterol was characterized in all three groups. In positive mode, the discrimination among three groups was much clearer than that in negative mode by using multivariate analysis of orthogonal partial-least squares-discriminant analysis (OPLS-DA). DART-TOF-MS can ionize various small organic molecules in living tissues and is an efficient alternative analytical tool for acquiring full chemical fingerprints from living tissues without requiring sample preparation. DART-MS measurement of skin tissue with multivariate analysis proved to be a powerful method to discriminate between experimental groups and to find biomarkers for various experiment models in skin dermatological research.

Structure of epitaxial MgO layers on TiC(001) studied by time-of-flight impact-collision ion scattering spectroscopy (비행시간형 직충돌 이온산란 분광법을 사용한 TiC(001)면에 성장된 MgO막의 구조해석)

  • Hwang, Yeon;Souda, Ryutaro
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.3
    • /
    • pp.181-186
    • /
    • 1997
  • Time-of-flight impact-collision ion scattering spectroscopy (TOF-ICISS) was applied to study the geometrical structure of epitaxially grown MgO layers on a TiC(001). The hetero-epitaxial MgO layer was able to be deposited by thermal evaporation of magnesium onto the TiC(001) surface and subsequent exposure of oxygen at room temperature. A slight heating of the substrate at around $300^{\circ}C$ was necessary to overcome a thermal barrier for the ordering. The well-ordered MgO structure was confirmed with the 1$\times$1 LEED pattern. TOF-ICISS was useful in studying interface structure between oxide and substrate. The results revealed that the MgO layer is formed at the on-top sites of the TiC(001) substrate and the lateral lattice constant of MgO layer is the same as that of the TiC substrate. The MgO was deposited within two layers on the most parts of the surface.

  • PDF

Anti-Inflammatory Effects of Streamed Platycodon grandiflorum against UVB Radiation-Induced Oxidative Stress in Human Primary Dermal Fibroblast

  • Lee, Ji Yeon;Park, Jeong-Yong;Lee, Dae Young;Kim, Hyung Don;Kim, Geum-Soog;Lee, Seung Eun;Seo, Kyung Hye
    • The Korean Journal of Food And Nutrition
    • /
    • v.31 no.4
    • /
    • pp.495-501
    • /
    • 2018
  • Ultraviolet B (UVB) exposure is a risk factor for skin damage resulting in oxidative stress, inflammation, and cell death. The purpose of this study was to investigate the physicochemical properties of Platycodon grandiflorum (PG) to improve its biological activities using a three-step steaming process. We investigated the protective effects of PG and steamed PG extracts on human dermal fibroblasts (HDFs) against UVB radiation-induced oxidative stress and inflammation as well as the underlying mechanisms. The antioxidant potential of the PG extracts was evaluated by measuring the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS) scavenging activity. ABTS and DPPH were shown by the 0, 30, and 70% ethanol extracts of 2S-PG and 3S-PG ($IC_{50}$, 28~45 and $27{\sim}30{\mu}g/mL$, respectively). Treatment of UVB-irradiated cells with steamed PG ($25{\sim}400{\mu}g/mL$) did not affect their viability. The streamed PG extract suppressed UVB-induced generation of reactive oxygen species (ROS). In addition, streamed PG extract reduced cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) protein expression in UVB-irradiated HDF, regulating nuclear factor $(NF)-{\kappa}B$ expression. These findings suggest that steamed PG extract may be potentially effective against inflammation associated with UVB-induced oxidation stress.

Curcumin Conjugates Induce Apoptosis Via a Mitochondrion Dependent Pathway in MCF-7 and MDA-MB-231 Cell Lines

  • Singh, Durg Vijay;Agarwal, Shikha;Singh, Preeti;Godbole, Madan Madhav;Misra, Krishna
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.5797-5804
    • /
    • 2013
  • In order to enhance the bioavailability of curcumin its conjugates with piperic acid and glycine were synthesized by esterifying the 4 and 4' phenolic hydroxyls, the sites of metabolic conjugation. Antiproliferative and apoptotic efficacy of synthesized conjugates was investigated in MCF-7 and MDA-MB-231 cell lines. $IC_{50}$ values of di-O-glycinoyl (CDG) and di-O-piperoyl (CDP) esters of curcumin were found to be comparable with that of curcumin. Both conjugates induced chromatin condensation fragmentation and apoptotic body formation. CDP exposure to MCF-7 cells induced apoptosis initiating loss of mitochondrial membrane potential (${\Delta}{\Psi}m$) followed by inhibition of translocation of transcription factor NF-${\kappa}B$ and release of Cytochrome-C. Reactive oxygen species (ROS) production was evaluated by fluorescent activated cell sorter. Change in ratio of Bcl2/Bclxl was observed, suggesting permeablization of mitochondrial membrane leading to the release of AIF, Smac and other apoptogenic molecules. DNA fragmentation as a hallmark for apoptosis was monitored by TUNEL as well as agrose gel electrophoresis. Thus, it was proven that conjugation does not affect the therapeutic potential of parent molecule in vitro, while these could work in vivo as prodrugs with enhanced pharmacokinetic profile. Pharmacokinetics of these molecules under in vivo conditions is a further scope of this study.

Expression of Epidermal Growth Factor-like Domain 7 is Increased by Transcatheter Arterial Embolization of Liver Tumors

  • Li, Zhi;Ni, Cai-Fang;Zhou, Jin;Shen, Xiao-Chun;Yin, Yu;Du, Peng;Yang, Chao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.3
    • /
    • pp.1191-1196
    • /
    • 2015
  • Background: Epidermal growth factor-like domain multiple 7 (EGFL7), recently identified as a secreted protein regulated by oxygen exposure, plays a critical role in promoting metastasis of hepatocellular carcinoma (HCC). Transcatheter arterial embolization (TAE) is widely used for treatment of HCC, resulting in hypoxia in tumors and surrounding liver tissues. Accordingly, we proposed the hypothesis that there could be a relationship between expression of EGFL7 and response to TAE. Materials and Methods: We established a rabbit VX2 liver tumor model using percutaneous puncture technique guided by computed tomography. TAE and sham embolization were performed and the results were confirmed by MRI 3 weeks after inoculation. We investigated the EGFL7 expression of the two groups at 6h and 3 days after intervention by means of immunohistochemistry and Western blotting. Results: Immunohistochemical staining demonstrated that the levels of EGFL7 protein significantly increased in the TAE-treated tumors compared with the control group at 6 hours (P=0.031) and 3 days (P=0.020) after intervention. Meanwhile, the relative EGFL7 protein detected in TAE group also up-regulated compared with the control group at 6 hours (P=0.020) and 3 days (P=0.024) after intervention. Conclusions: This study reveals an increase of EGFL7 expression in rabbit VX2 liver tumors after TAE. The role of EGFL7 in HCC, especially its biological behavior after TAE, needs further investigation.