Changes in Antioxidant Enzyme Activity and Physiological Responses to Cadmium and Tributyltin Exposure in the Ark Shell, Scapharca Broughtonii

  • An, Myung-In (Division of Marine Environment & BioScience, Korea Maritime University) ;
  • An, Kwang-Wook (Division of Marine Environment & BioScience, Korea Maritime University) ;
  • Choi, Cheol-Young (Division of Marine Environment & BioScience, Korea Maritime University)
  • Published : 2009.12.31

Abstract

Cadmium (Cd) and tributyltin (TBT) are common contaminants of marine and freshwater ecosystems, and can induce the formation of reactive oxygen species (ROS). These ROS can, in turn, cause oxidative stress. In the present study, we investigated time-related effects of Cd (0.05 and 0.1 ppm) and TBT (5 and 10 ppb) treatment on antioxidant enzyme activity, i.e., the activity of superoxide dismutase (SOD) and catalase (CAT) in the gills and digestive glands of the ark shell, Scapharca broughtonii. In addition, hydrogen peroxide ($H_2O_2$) concentrations, lysozyme activity, and glutamate oxaloacetate transaminase (GOT) and glutamate pyruvate transaminase (GPT) levels were measured in the hemolymph. We found that Cd and TBT treatment significantly increased antioxidant enzyme mRNA expression and activity in the digestive glands and gills in a time-dependent manner. In response to the Cd and TBT treatments, antioxidant enzymes mRNA expression and activity increased up to day 5 in the digestive glands and then decreased by day 7. In the gills, antioxidant enzymes mRNA expression and activity increased up to day 3 and then decreased by day 5. Likewise, $H_2O_2$ concentrations significantly increased up to day 5 and then decreased by day 7. Finally, lysozyme activity decreased during the experimental period, whereas GOT and GPT levels were significantly increased in a time-dependent manner. These results suggest that antioxidant enzymes play an important role in decreasing ROS levels and oxidative stress in ark shells exposed to Cd and TBT.

Keywords

References

  1. Rainbow, P. S. Biomonitoring of heavy metal availability in the marine environment. Mar Pollut Bull 31:183-192 (1995) https://doi.org/10.1016/0025-326X(95)00116-5
  2. Kim, S. G., Jee, J. H. & Kang, J. C. Cadmium accumulation and elimination in tissues of juvenile olive flounder, Paralichthys olivaceus after subchronic cadmium exposure. Environ Pollut 127:117-123 (2004) https://doi.org/10.1016/S0269-7491(03)00254-9
  3. Benavides, M. P., Gallego, S. M. & Tomaro, M. L. Cadmium toxicity in plants. Braz J Plant Physiol 17: 21-34 (2005) https://doi.org/10.1590/S1677-04202005000100003
  4. Jo, P. G., Choi, Y. K. & Choi, C.Y. Cloning and mRNA expression of antioxidant enzymes in the Pacific oyster, Crassostrea gigas in response to cadmium exposure. Comp Biochem Physiol 147C:460-469 (2008) https://doi.org/10.1016/j.cbpc.2008.02.001
  5. Maguire, R. J. Environmental aspects of tributyltin. Appl Organomet Chem 1:475-498 (1987) https://doi.org/10.1002/aoc.590010602
  6. Antizlar-Ladislao, B. Environmental levels, toxicity and human exposure to tributyltin (TBT)-contaminated marine environment. Environ Int 34:292-308 (2008) https://doi.org/10.1016/j.envint.2007.09.005
  7. Langston, W. J. Recent developments in TBT ecotoxicology. Toxicol Ecotox News 3:179-187 (1996)
  8. Huang, Z. et al. Antioxidant responses in Meretrix meretrix exposed to environmentally relevant doses of tributyltin. Environ Toxicol Pharmacol 20:107-111 (2005) https://doi.org/10.1016/j.etap.2004.11.004
  9. McFarland, V. A. et al. Biomarkers of oxidative stress and genotoxicity in livers of field-collected brown bullhead, Ameiurus nebulosus. Arch Environ Con Tox 37:236-241 (1999) https://doi.org/10.1007/s002449900510
  10. Hansen, B. H., Romma, S., Garmo, O. A., Olsvik, P. A. & Andersen, R. A. Antioxidative stress proteins and their gene expression in brown trout (Salmo trutta) from three rivers with different heavy metal levels. Comp Biochem Physiol 143C:263-274 (2006)
  11. Kashiwagi, A., Kashiwagi, K., Takase, M., Hanada, H. & Nakamura, M. Comparison of catalase in diploid and haploid Rana rugosa using heat and chemical inactivation techniques. Comp Biochem Physiol 118B: 499-503 (1997) https://doi.org/10.1016/S0305-0491(97)00216-2
  12. Mruk, D. D., Silverstrini, B., Mo, M. & Chenga, C. Y. Antioxidant superoxide dismutase-a review: its function, regulation in the testis, and role in male fertility. Contraception 65:305-311 (2002) https://doi.org/10.1016/S0010-7824(01)00320-1
  13. Monari, M. et al. Effect of exposure to benzo[a]pyrene on SODs, CYP1A1/1A2- and CYP2E1 immunopositive proteins in the blood clam Scapharca inaequivalvis. Mar Environ Res 63:200-218 (2007) https://doi.org/10.1016/j.marenvres.2006.08.004
  14. Faria, M. et al. Multi-biomarker responses in the freshwater mussel Dreissena polymorpha exposed to polychlorobiphenyls and metals. Comp Biochem Physiol 149C:281-288 (2009) https://doi.org/10.1016/j.cbpc.2008.07.012
  15. Wheeler, C. R., Salzman, J. A. & Elsayed, N. M. Automated assays for superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase activity. Anal Biochem 184:193-199 (1990) https://doi.org/10.1016/0003-2697(90)90668-Y
  16. Richardson, B. J. et al. Antioxidant responses to polycyclic aromatic hydrocarbons and organochlorine pesticides in green-lipped mussels (Perna viridis): Do mussels 'integrate' biomarker responses? Mar Pollut Bull 57:503-514 (2008) https://doi.org/10.1016/j.marpolbul.2008.02.032
  17. Suresh, K. & Mohandas, A. Hemolymph acid phosphatase activity pattern in copper-stressed bivalves. J Invertebr Pathol 55:118-125 (1990) https://doi.org/10.1016/0022-2011(90)90041-4
  18. Grundy, M. M., Moore, M. N., Howell, S. M. & Ratcliffe, N. A. Phagocytic reduction and effects on lysosomal membranes by polycyclic aromatic hydrocarbons, in haemocytes of Mytilus edulis. Aquat Toxicol 34:273-290 (1996) https://doi.org/10.1016/0166-445X(95)00044-5
  19. Livingstone, D. R., Lips, F., Garcia Martinez, P. & Pipe, R. K. Antioxidant enzymes in the digestive gland of the common mussel Mytilus edulis. Mar Biol 122:265-276 (1992) https://doi.org/10.1007/BF00702471
  20. Funes, V., Alhama, J., Navas, J. I., Lopez-Barea, J. & Peinado, J. Ecotoxicological effects of metal pollution in two mollusc species from the Spanish South Atlantic littoral. Environ Pollut 139:214-223 (2006) https://doi.org/10.1016/j.envpol.2005.05.016
  21. Rice, C. D. & Weeks, B. A. Tributyltin stimulates reactive oxygen formation in toadfish microphages. Dev Comp Immunol 15:431-436 (1991) https://doi.org/10.1016/0145-305X(91)90035-W
  22. Kim, C. K., Kim D. H., Lee, J. S. & Lee, K. T. Influence of heavy metals, ammonia, and organotin compounds on the survival of arkshell clams, Scapharca broughtonii. Kor J Malacol 20:93-105 (2004)
  23. Park, M. S., Jo, P. G., Choi, Y. K., An, K. W. & Choi, C. Y. Characterization and mRNA expression of Mn- SOD and physiological responses to stresses in the Pacific oyster Crassostrea gigas. Mar Biol Res In Press, Accepted Manuscript (2009) https://doi.org/10.1080/17451000802626554
  24. Wang, C. et al. Effects of tributyltin, benzo[a]pyrene, and their mixture on antioxidant defense systems in Sebastiscus marmoratus. Ecotoxicol Environ Saf 65: 381-387 (2006) https://doi.org/10.1016/j.ecoenv.2005.08.003
  25. Xue, Q. & Tristan, R. Enzymatic activities in European flat oyster, Ostrea edulis, and Pacific oyster, Crassostrea gigas, hemolymph. J Invertebr Pathol 76:155-163 (2000) https://doi.org/10.1006/jipa.2000.4965
  26. Pipe, R. K. Generation of reactive oxygen metabolites by the haemocytes of the mussel Mytilus edulis. Dev Comp Immunol 16:111-122 (1992) https://doi.org/10.1016/0145-305X(92)90012-2
  27. Chen, M., Yang, H., Delaporte, M. & Zhao, S. Immune condition of Chlamys farreri in reponse to acute temperature challenge. Aquaculture 271:479-487 (2007) https://doi.org/10.1016/j.aquaculture.2007.04.051
  28. Vaglio, A. & Landriscina, C. Changes in liver enzyme activity in the teleost Sparus aurata in response to cadmium intoxication. Ecotoxicol Environ Saf 43:111-116 (1999) https://doi.org/10.1006/eesa.1999.1778
  29. Yoshizuka, M. et al. Studies on the hepatotoxicity in-duced by bis (tributyltin) oxide. Arch Toxicol 66:182-187 (1992) https://doi.org/10.1007/BF01974012
  30. Crapo, J. D., McCord, J. M. & Fridovich, I. Preparation and assay of superoxide dismutases. Meth Enzymol 53:382-393 (1978) https://doi.org/10.1016/S0076-6879(78)53044-9
  31. Nouroozzadeh, J., Tajaddinisarmadi, J. & Wolff, S. P. Measurement of plasma hydroperoxide concentrations by ferrous oxidation-xylenol orange assay in conjunction with triphenylphosphine. Anal Biochem 220:403-409 (1994) https://doi.org/10.1006/abio.1994.1357
  32. Santarem, M. M., Robledo, J. A. F. & Figueras, A. Seasonal changes in hemocytes and serum defense factors in the blue mussel, Mytilus galloprovincialis. Dis Aquat Org 18:217-222 (1994) https://doi.org/10.3354/dao018217