Heterologous Microarray Hybridization Used for Differential Gene Expression Profiling in Benzo[a]pyrene-exposed Marine Medaka

  • Woo, Seon-Ock (South Sea Environment Research Department, Korea Ocean Research and Development Institute) ;
  • Won, Hyo-Kyoung (South Sea Environment Research Department, Korea Ocean Research and Development Institute) ;
  • Jeon, Hye-Young (South Sea Environment Research Department, Korea Ocean Research and Development Institute) ;
  • Kim, Bo-Ra (South Sea Environment Research Department, Korea Ocean Research and Development Institute) ;
  • Lee, Taek-Kyun (South Sea Environment Research Department, Korea Ocean Research and Development Institute) ;
  • Park, Hong-Seog (Korea Research Institute of Bioscience and Biotechnology) ;
  • Yum, Seung-Shic (South Sea Environment Research Department, Korea Ocean Research and Development Institute)
  • Published : 2009.12.31

Abstract

Differential gene expression profiling was performed in the hepatic tissue of marine medaka fish (Oryzias javanicus) after exposure to benzo[a]pyrene (BaP), a polycyclic aromatic hydrocarbon (PAH), by heterologous hybridization using a medaka cDNA microarray. Thirty-eight differentially expressed candidate genes, of which 23 were induced and 15 repressed (P<0.01), were identified and found to be associated with cell cycle, development, endocrine/reproduction, immune, metabolism, nucleic acid/protein binding, signal transduction, or non-categorized. The presumptive physiological changes induced by BaP exposure were identified after considering the biological function of each gene candidate. The results obtained in this study will allow future studies to assess the molecular mechanisms of BaP toxicity and the development of a systems biology approach to the stress biology of organic chemicals.

Keywords

References

  1. Eddy, S. F. & Storey, K. B. Comparative molecular physiological genomics. Heterologous probing of cDNA arrays. Methods Mol Biol 410:81-110 (2008) https://doi.org/10.1007/978-1-59745-548-0_6
  2. Vontas, J. et al. Transcriptional analysis of insecticide resistance in Anopheles stephensi using cross-species microarray hybridization. Insect Mol Biol 16:315-324 (2007) https://doi.org/10.1111/j.1365-2583.2007.00728.x
  3. Castilho, P. C., Buckley, B. A., Somero, G. & Block, B. A. Heterologous hybridization to a complementary DNA microarray reveals the effect of thermal acclimation in the endothermic bluefin tuna (Thunnus orientalis). Mol Ecol 18:2092-2102 (2009) https://doi.org/10.1111/j.1365-294X.2009.04174.x
  4. Lu, Y. R. et al. A preliminary study on the feasibility of gene expression profile of rhesus monkey detected with human microarray. Transplant Proc 40:598-602 (2008) https://doi.org/10.1016/j.transproceed.2008.01.029
  5. Buckley, B. A. Comparative environmental genomics in non-model species: using heterologous hybridization to DNA-based microarrays. J Exp Biol 210:1602-1606 (2007) https://doi.org/10.1242/jeb.002402
  6. Warshawsky, D. et al. Biotransformation of benzo[a] pyrene and other polycyclic aromatic hydrocarbons and heterocyclic analogs by several green algae and other algal species under gold and white light. Chem Biol Interact 97:131-148 (1995) https://doi.org/10.1016/0009-2797(95)03610-X
  7. Nesto, N. et al. Bioaccumulation and biomarker responses of trace metals and micro-organic pollutants in mussels and fish from the Lagoon of Venice, Italy. Mar Pollut Bull 55:469-484 (2007) https://doi.org/10.1016/j.marpolbul.2007.09.009
  8. Morales-Caselles, C., Ramos, J., Riba, I. & Delvalls, T. A. Using the polychaete Arenicola marina to determine toxicity and bioaccumulation of PAHS bound to sediments. Environ Monit Assess 142:219-226 (2008) https://doi.org/10.1007/s10661-007-9926-5
  9. Cheikyula, J. O., Koyama, J. & Uno, S. Comparative study of bioconcentration and EROD activity induction in the Japanese flounder, red sea bream, and Java medaka exposed to polycyclic aromatic hydrocarbons. Environ Toxicol 23:354-362 (2008) https://doi.org/10.1002/tox.20352
  10. U.S.EPA. Dose-Response Analysis of Ingested Benzo [a]pyrene (CAS No. 50-32-8) (Human Health Assessment Group, Office of Health and Environmental Assessment, Washington, DC. EPA/600/R-92/045, 1991)
  11. Cossins, A. R. & Crawford, D. L. Fish as models for environmental genomics. Nat Rev Genet 6:324-333 (2005) https://doi.org/10.1038/nrg1590
  12. OECD. in OECD Guideline for Testing of Chemicals (Organisation for Economic Cooperation and Development, Paris, 1992)
  13. Yu, R. M. et al. Induction of hepatic choriogenin mRNA expression in male marine medaka: a highly sensitive biomarker for environmental estrogens. Aquat Toxicol 77:348-358 (2006) https://doi.org/10.1016/j.aquatox.2006.01.003
  14. Imai, S., Koyama, J. & Fujii, K. Effects of estrone on full life cycle of Java medaka (Oryzias javanicus), a new marine test fish. Environ Toxicol Chem 26: 726- 731 (2007) https://doi.org/10.1897/05-539R2.1
  15. Woo, S., Yum, S., Kim, D. W. & Park, H. S. Transcripts level responses in a marine medaka (Oryzias javanicus) exposed to organophosphorus pesticide. Comp Biochem Physiol C Toxicol Pharmacol 149: 427-432 (2009) https://doi.org/10.1016/j.cbpc.2008.10.100
  16. Quelle, D. E. et al. Overexpression of mouse D-type cyclins accelerates G1 phase in rodent fibroblasts. Genes Dev 7:1559-1571 (1993) https://doi.org/10.1101/gad.7.8.1559
  17. Liu, S. C. et al. Overexpression of cyclin D2 is assciated with increased in vivo invasiveness of human squamous carcinoma cells. Mol Carcinog 34:131-139 (2002) https://doi.org/10.1002/mc.10057
  18. Wang, Z. et al. RACK1, an excellent predictor for poor clinical outcome in oral squamous carcinoma, similar to Ki67. Eur J Cancer 45:490-496 (2009) https://doi.org/10.1016/j.ejca.2008.11.012
  19. Yokoe, T. et al. Clinical significance of growth differentiation factor 11 in colorectal cancer. Int J Oncol 31:1097-1101 (2007)
  20. Mussunoor, S. & Murray, G. I. The role of annexins in tumour development and progression. J Pathol 216: 131-140 (2008) https://doi.org/10.1002/path.2400
  21. Zupkovitz, G. et al. Negative and positive regulation of gene expression by mouse histone deacetylase 1. Mol Cell Biol 26:7913-7928 (2006) https://doi.org/10.1128/MCB.01220-06
  22. Evans, R. M. The steroid and thyroid hormone receptor superfamily. Science 240:889-895 (1988) https://doi.org/10.1126/science.3283939
  23. Hawkins, M. B. et al. Identification of a third distinct estrogen receptor and reclassification of estrogen receptors in teleosts. Proc Natl Acad Sci USA 97: 10751-10756 (2000) https://doi.org/10.1073/pnas.97.20.10751
  24. Orlando, E. F., Katsu, Y., Miyagawa, S. & Iguchi, T. Cloning and differential expression of estrogen receptor and aromatase genes in the self-fertilizing hermaphrodite and male mangrove rivulus, Kryptolebias marmoratus. J Mol Endocrinol 37:353-365 (2006) https://doi.org/10.1677/jme.1.02101
  25. Wahli, W., Martinez, E., Corthesy, B. & Cardinaux, J. R. cis- and trans-acting elements of the estrogen-re- gulated vitellogenin gene B1 of Xenopus laevis. J Steroid Biochem 34:17-32 (1989) https://doi.org/10.1016/0022-4731(89)90062-9
  26. Sumpter, J. P. & Jobling, S. Vitellogenesis as a biomarker for estrogenic contamination of the aquatic environment. Environ Health Perspect 103(Suppl 7): 173-178 (1995) https://doi.org/10.2307%2F3432529
  27. Arukwe, A., Yadetie, F., Male, R. & Goksoyr, A. In vivo modulation of nonylphenol-induced zonagenesis and vitellogenesis by the antiestrogen, 3,3'4,4'-tetrachlorobiphenyl (PCB-77) in juvenile fish. Environ Toxicol Pharmacol 10:5-15 (2001) https://doi.org/10.1016/S1382-6689(01)00063-1
  28. Murata, K. et al. Cloning of cDNA and estrogen-induced hepatic gene expression for choriogenin H, a precursor protein of the fish egg envelope (chorion). Proc Natl Acad Sci USA 94:2050-2055 (1997) https://doi.org/10.1073/pnas.94.5.2050
  29. Lee, C., Na, J. G., Lee, K. C. & Park, K. Choriogenin mRNA induction in male medaka, Oryzias latipes as a biomarker of endocrine disruption. Aquat Toxicol 61:233-241 (2002) https://doi.org/10.1016/S0166-445X(02)00060-7
  30. Moncaut, N., Somoza, G., Power, D. M. & Canario, A. V. Five gonadotrophin-releasing hormone receptors in a teleost fish: isolation, tissue distribution and phylogenetic relationships. J Mol Endocrinol 34: 767- 779 (2005) https://doi.org/10.1677/jme.1.01757
  31. Imig, J. D. ACE inhibition and bradykinin-mediated renal vascular responses: EDHF involvement. Hypertension 43:533-535 (2004) https://doi.org/10.1161/01.HYP.0000118054.86193.ce
  32. Dinh, D. T., Frauman, A. G., Johnston, C. I. & Fabiani, M. E. Angiotensin receptors: distribution, signalling and function. Clin Sci (Lond) 100:481-492 (2001) https://doi.org/10.1042/CS20000263
  33. Reid, K. B. & Porter, R. R. The proteolytic activation systems of complement. Annu Rev Biochem 50:433-464 (1981) https://doi.org/10.1146/annurev.bi.50.070181.002245
  34. Hirayama, M., Kobiyama, A., Kinoshita, S. & Watabe, S. The occurrence of two types of hemopexin-like protein in medaka and differences in their affinity to heme. J Exp Biol 207:1387-1398 (2004) https://doi.org/10.1242/jeb.00897
  35. Gracey, A. Y., Troll, J. V. & Somero, G. N. Hypoxiainduced gene expression profiling in the euryoxic fish Gillichthys mirabilis. Proc Natl Acad Sci USA 98: 1993-1998 (2001) https://doi.org/10.1073/pnas.98.4.1993
  36. Kikuchi, K., Watabe, S. & Aida, K. The Wap65 gene expression of goldfish (Carassius auratus) in association with warm water temperature as well as bacterial lipopolysaccharide (LPS). Fish Physiol Biochem 17:423-432 (1997) https://doi.org/10.1023/A:1007768531655
  37. Sambrook, J. G., Figueroa, F. & Beck, S. A genomewide survey of Major Histocompatibility Complex (MHC) genes and their paralogues in zebrafish. BMC Genomics 6:152 (2005) https://doi.org/10.1186/1471-2164-6-152
  38. Schlezinger, J. J. & Stegeman, J. J. Induction and suppression of cytochrome P450 1A by 3,3',4,4',5- pentachlorobiphenyl and its relationship to oxidative stress in the marine fish scup (Stenotomus chrysops). Aquat Toxicol 52:101-115 (2001) https://doi.org/10.1016/S0166-445X(00)00141-7
  39. Barker, C. W., Fagan, J. B. & Pasco, D. S. Down-regulation of P4501A1 and P4501A2 mRNA expression in isolated hepatocytes by oxidative stress. J Biol Chem 269:3985-3990 (1994)
  40. Chen, J., Shi, Y. H. & Li, M. Y. Changes in transferrin and hepcidin genes expression in the liver of the fish Pseudosciaena crocea following exposure to cadmium. Arch Toxicol 82:525-530 (2008) https://doi.org/10.1007/s00204-008-0297-7
  41. Bukau, B. & Horwich, A. L. The Hsp70 and Hsp60 chaperone machines. Cell 92:351-366 (1998) https://doi.org/10.1016/S0092-8674(00)80928-9
  42. Yaffe, M. B. et al. TCP1 complex is a molecular chaperone in tubulin biogenesis. Nature 358:245-248 (1992) https://doi.org/10.1038/358245a0
  43. Hofbauer, K. H. et al. Oxygen tension regulates the expression of a group of procollagen hydroxylases. Eur J Biochem 270:4515-4522 (2003) https://doi.org/10.1046/j.1432-1033.2003.03846.x
  44. Sapieha, P. S. et al. Receptor protein tyrosine phosphatase sigma inhibits axon regrowth in the adult injured CNS. Mol Cell Neurosci 28:625-635 (2005) https://doi.org/10.1016/j.mcn.2004.10.011
  45. Zetterstrom, R. H., Williams, R., Perlmann, T. & Olson, L. Cellular expression of the immediate early transcription factors Nurr1 and NGFI-B suggests a gene regulatory role in several brain regions including the nigrostriatal dopamine system. Brain Res Mol Brain Res 41:111-120 (1996) https://doi.org/10.1016/0169-328X(96)00074-5
  46. Song, X. et al. A model for the quaternary structure of the proteasome activator PA28. J Biol Chem 271: 26410-26417 (1996) https://doi.org/10.1074/jbc.271.42.26410
  47. Fons, R. D., Bogert, B. A. & Hegde, R. S. Substratespecific function of the translocon-associated protein complex during translocation across the ER membrane. J Cell Biol 160:529-539 (2003) https://doi.org/10.1083/jcb.200210095
  48. Li, J., Mayne, R. & Wu, C. A novel muscle-specific beta 1 integrin binding protein (MIBP) that modulates myogenic differentiation. J Cell Biol 147:1391-1398 (1999) https://doi.org/10.1083/jcb.147.7.1391
  49. Griffith, D. A. & Jarvis, S. M. Nucleoside and nucleobase transport systems of mammalian cells. Biochim Biophys Acta 1286:153-181 (1996) https://doi.org/10.1016/S0304-4157(96)00008-1
  50. Eltzschig, H. K. et al. HIF-1-dependent repression of equilibrative nucleoside transporter (ENT) in hypoxia. J Exp Med 202:1493-1505 (2005) https://doi.org/10.1084/jem.20050177