• Title/Summary/Keyword: Oxide Scale

Search Result 488, Processing Time 0.024 seconds

Printing of Polymer Dielectric via Optimal Blade Coating for Large-scale Low-Leakage Capacitors (대면적 저누설 커패시터를 위한 최적화 블레이드 코팅 기반 고분자 유전체 프린팅)

  • Seo, Kyeong-Ho;Bae, Jin-Hyuk
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.51-55
    • /
    • 2021
  • We demonstrated a polymer dielectric with low leakage characteristics through an optimal blade coating method for low-cost and large-scale fabrication of metal-insulator-metal (MIM) capacitors. Cross-linked poly(4-vinylphenol) (C-PVP), which is a typically used polymer dielectric, was coated on a 10 × 10 cm indium-tin-oxide (ITO) deposited glass substrate by changing the deposition temperature (TD) and coating velocity (VC) in the blade coating. During the blade coating, the thickness of the thin c-PVP varied depending on TD and VC owing to the 'Landau-Levich (LL) regime'. The c-PVP-dielectric-based MIM capacitor fabricated in this study showed the lowest leakage current characteristics (10-6 A/㎠ at 1.2 MV/㎠, annealing at 200 ℃) and uniform electrical characteristics when TD was 30 ℃ and VC was 5 mm/s. In addition, at TD = 30 ℃, stable leakage characteristics were confirmed when a different electric field was applied. These results are expected to positively contribute to applications with next-generation electronic devices.

Oxidation and Electrical Properties of (LaSr)(CrCo)3Coated STS-430 Steel by Plasma Spraying (플라즈마 스프레이 (LaSr)(CrCo)O3 코팅된 STS-430 합금의 고온 산화 거동 및 전기적 특성)

  • Lee, Chung-Hwan;Lim, Kyeong-Tae;Baik, Kyeong-Ho
    • Journal of Powder Materials
    • /
    • v.16 no.3
    • /
    • pp.185-190
    • /
    • 2009
  • Fe-Cr steels are the most promising candidate for interconnect in solid oxide fuel cells. In this study, an effective, dense and well adherent (LaSr)(CrCo)$O_3$ [LSCC] coating layer was produced onto 430 stainless steel (STS-430) by atmospheric plasma spraying and the oxidation behavior as well as electrical properties of the LSCC coated STS-430 were investigated. A significant oxidation of pristine STS-430 occurred at $800^{\circ}C$ in air environment, leading to the formation of $Cr_2O_3$ and $FeCr_2O_4$ scale layer up to ${\sim}7{\mu}m$ after 1200h, and consequently increased an area specific resistance of $330\;m{\Omega}{\cdot}cm^2$. Although the plasma sprayed LSCC coating contained the characteristic pore network, the coated samples presented apparent advantages in reducing oxidation growth of STS-430, resulting a decrease in oxide scale thickness of ${\sim}1{\mu}m$ at $800^{\circ}C$ after 1200h. The area specific resistance of the LSCC coated STS-430 was much reduced to ${\sim}7\;m{\Omega}{\cdot}cm^2$ after exposure at $800^{\circ}C$ for 1200h, compared to that of the pristine STS-403.

Anodization Process of the YBa2Cu3O7-x Strip Lines by the Conductive Atomic Force Microscope Tip (전도성 AFM 탐침에 의한 YBa2Cu3O7-x 스트립 라인의 산화피막 형성)

  • 고석철;강형곤;임성훈;한병성;이해성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.8
    • /
    • pp.875-881
    • /
    • 2004
  • Fundamental results obtained from an atomic force microscope (AFM) chemically-induced direct nano-lithography process are presented, which is regarded as a simple method for fabrication nm-scale devices such as superconducting flux flow transistors (SFFTs) and single electron tunneling transistors (SETs). Si cantilevers with Pt coating and with 30 nm thick TiO coating were used as conducting AFM tips in this study. We observed the surfaces of superconducting strip lines modified by AFM anodization' process. First, superconducting strip lines with scan size 2 ${\mu}{\textrm}{m}$${\times}$2 ${\mu}{\textrm}{m}$ have been anodized by AFM technology. The surface roughness was increased with the number of AFM scanning, The roughness variation was higher in case of the AFM tip with a positive voltage than with a negative voltage in respect of the strip surface. Second, we have patterned nm-scale oxide lines on ${YBa}-2{Cu}_3{O}_{7-x}$ superconducting microstrip surfaces by AFM conductive cantilever with a negative bias voltage. The ${YBa}-2{Cu}_3{O}_{7-x}$ oxide lines could be patterned by anodization technique. This research showed that the critical characteristics of superconducting thin films were be controlled by AFM anodization process technique. The AFM technique was expected to be used as a promising anodization technique for fabrication of an SFFT with nano-channel.

A study on the device structure optimization of nano-scale MuGFETs (나노 스케일 MuGFET의 소자 구조 최적화에 관한 연구)

  • Lee Chi-Woo;Yun Serena;Yu Chong-Gun;Park Jong-Tae
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.4 s.346
    • /
    • pp.23-30
    • /
    • 2006
  • This paper describes the short-channel effect(SCE), corner effect of nano-scale MuGFETs(Multiple-Gate FETs) by three-dimensional simulation. We can extract the equivalent gate number of MuGFETs(Double-gate=2, Tri-gate=3, Pi-gate=3.14, Omega-gate=3.4, GAA=4) by threshold voltage model. Using the extracted gate number(n) we can calculate the natural length for each gate devices. We established a scaling theory for MuGFETs, which gives a optimization to avoid short channel effects for the device structure(silicon thickness, gate oxide thickness). It is observed that the comer effects decrease with the reduction of doping concentration and gate oxide thickness when the radius of curvature is larger than 17 % of the channel width.

Current Status in Light Trapping Technique for Thin Film Silicon Solar Cells (박막태양전지의 광포획 기술 현황)

  • Park, Hyeongsik;Shin, Myunghoon;Ahn, Shihyun;Kim, Sunbo;Bong, Sungjae;Tuan, Anh Le;Hussain, S.Q.;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.2 no.3
    • /
    • pp.95-102
    • /
    • 2014
  • Light trapping techniques can change the propagation direction of incident light and keep the light longer in the absorption layers of solar cells to enhance the power conversion efficiency. In thin film silicon (Si) solar cells, the thickness of absorption layer is generally not enough to absorb entire available photons because of short carrier life time, and light induced degradation effect, which can be compensated by the light trapping techniques. These techniques have been adopted as textured transparent conduction oxide (TCO) layers randomly or periodically textured, intermediate reflection layers of tandem and triple junction, and glass substrates etched by various patterning methods. We reviewed the light trapping techniques for thin film Si solar cells and mainly focused on the commercially available techniques applicable to textured TCO on patterned glass substrates. We described the characterization methods representing the light trapping effects, texturing of TCO and showed the results of multi-scale textured TCO on etched glass substrates. These methods can be used tandem and triple thin film Si solar cells to enhance photo-current and power conversion efficiency of long term stability.

Effect of Sulfur on the High-temperature Oxidation of Fe-34.4Cr-14.5Ni-2.5Mo-0.4W-0.4Mn-0.5Si Alloys (Fe-34.4Cr-14.5Ni-2.5Mo-0.4W-0.4Mn-0.5Si 합금의 고온 산화에 미치는 S의 영향)

  • Lee, Dong Bok;Lee, Kyong-Hwan;Bae, Geun Soo;Cho, Gyu Chul;Jung, Jae Ok;Kim, Min Jung
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.5
    • /
    • pp.386-391
    • /
    • 2017
  • Two kinds of steels whose compositions were Fe-34.4Cr-14.5Ni-2.5Mo-0.4W-0.4Mn-0.5Si-(0.009 or 0.35)S (wt.%) were centrifugally cast, and oxidized at $900^{\circ}C$ for 50-350 h in order to find the effect of sulfur on the high-temperature oxidation of Fe-34.4Cr-14.5Ni-2.5Mo-0.4W-0.4Mn-0.5Si-(0.009 or 0.35)S (wt.%) alloys. These alloys formed oxide scales that consisted primarily of $Cr_2O_3$ as the major oxide and $Cr_2MnO_4$ as the minor one through preferential oxidation of Cr and Mn. They additionally formed $SiO_2$ particles around the scale/alloy interface as well as inside the matrices. The high affinity of Mn with S led to the formation of scattered MnS inclusions particularly in the 0.35S-containing cast alloy. Sulfur was harmful to the oxidation resistance, because it deteriorated the scale/alloy adherence so as to accerelate the adherence and compactness of the formed scales.

Evaluation of the Effectiveness and Safety of Zanthoxylum piperitum Leaf Extract against Mild Degenerative Osteoarthritis of Knee: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial (경증의 퇴행성 슬관절염에 대한 초피나무잎 추출물의 유효성 및 안전성 평가: 무작위 배정, 이중맹검, 위약대조 임상연구)

  • Jeong, Ji-Hong;Lee, Soo-Hwan;Yoon, Hong-Ryoul;Kim, Soon-Joong
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.31 no.4
    • /
    • pp.167-191
    • /
    • 2021
  • Objectives Degenerative osteoarthritis of knee is a disease with an increasing number of patients worldwide and its general treatments have some side effects. Methods 102 subjects were classified into test group 1, test group 2, and control group, and clinical trial products were taken for 12 weeks. The effectiveness was evaluated with changes in visual analogue scale, Korean-Western Ontario and McMaster Universities Osteoarthritis Index, inducible nitric oxide synthase, and cyclooxygenase-2. Results Both test group 1 and test group 2 were effective in reducing the pain of degenerative osteoarthritis of knee, and only test group 2 was effective in improving the ability to perform daily activities. No clinically significant changes were observed for any safety parameter. Conclusions In conclusion, the data of this study indicate that Zanthoxylum piperitum leaf extract has effectiveness and safety against mild degenerative osteoarthritis of knee.

Study of oxidation behavior and tensile properties of candidate superalloys in the air ingress simulation scenario

  • Bin Du;Haoxiang Li;Wei Zheng;Xuedong He;Tao Ma;Huaqiang Yin
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.71-79
    • /
    • 2023
  • Air ingress incidents are major safety accidents in very-high-temperature reactors (VHTRs). Air containing a high volume fraction of oxygen may cause severe oxidation of core components at the VHTR, especially for the significantly thin alloy tube wall in the intermediate heat exchanger (IHE). The research objects of this study are Inconel 617 and Incoloy 800H, two candidate alloys for IHE in VHTR. The air ingress accident scenario is simulated with high-temperature air flow at 950 ℃. A continuous oxide scale was formed on the surfaces of both the alloys after the experiment. Because the oxide scale of Inconel 617 has a loose structure, whereas that of Incoloy 800H is denser, Inconel 617 exhibited significantly more severe internal oxidation than Incoloy 800H. Further, Inconel 617 showed a significant decrease in ultimate tensile strength and plasticity after aging for 200 h, whereas Incoloy 800H maintained its tensile properties satisfactorily. Through control experiment under vacuum, we preliminarily concluded that serious internal oxidation is the primary reason for the decline in the tensile properties of Inconel 617.

A Study on the Metallurgical Characteristic of Hammer Scale Produced through Traditional Iron-making Experiments (전통 제철실험을 통해 생산된 단조박편의 재료과학적 특성 연구)

  • Cho, Sung Mo;Cho, Nam Chul
    • Journal of Conservation Science
    • /
    • v.37 no.6
    • /
    • pp.738-747
    • /
    • 2021
  • This study attempted to investigate the metallurgical characteristic through material scientific analysis of hammer scale produced as a direct smelting method restoration experiment for each raw material of iron. To this end, four hammer scale groups were set up, respectively, by experimenting with Gyeongju-Gampo Iron sand and Yangyang Iron ore. For the analysis, principal component analysis, compound analysis, microstructure observation, and chemical composition were confirmed. As a result of principal component analysis, as forging and refining progressed, the content of Fe increased and the content of non-metallic objects decreased. As a result of compound analysis, iron oxide-based compounds were identified. As a result of confirming microstructure and chemical composition, Wüstite and Fayalite were observed overall, and agglomerated Wüstite were observed in some. Magnetite on shape of polygon and pillar was observed. In addition, it was confirmed that internal defects, impurities, and non-metallic interventions gradually decreased. In the future, it is necessary to investigate the metallurgical characteristic through material scientific analysis of hammer scale produced through restoration experiments using various raw material of iron, and compare them with those excavated from Iron manufacture ruins.

Effect of Reaction Factors on the Properties of Complex Oxide Powder Produced by Spray Roasting Process (분무배소법에 의해 생성되는 복합산화물 분말들의 특성에 미치는 반응인자들의 영향)

  • 유재근;이성수;박희범;안주삼;남용현;손진군
    • Resources Recycling
    • /
    • v.9 no.4
    • /
    • pp.16-27
    • /
    • 2000
  • In order to produce raw material powder of advanced magnetic material by spray roasting process, newly modified spray roasting system was developed in this work. In this spray roasting system, raw material solution was effectively atomized and sprayed into the reaction furnace. Also, uniform temperature distribution inside reaction furnace made thermal decomposition process fully completed, and produced powder was effectively collected in cyclone and bag filter. This system equipped with apparatus which can purify hazard produced gas. In this study complex acid solution was prepared by dissolution of mill scale and ferro-Mn into the acid solution, and the pH of this complex acid solution was controlled about to 4. It was conformed that mill scale and ferro-Mn containing a lot of impurities such as $SiO_2$, P and Al could be used as raw material by reducing the impurities content of complex acid solution below 20 ppm. Complex oxide powder of Fe-Mn system was produced by spraying purified complex acid solution into the spray roaster through nozzle, and the variations of produced powder characters were studied by changing he reaction conditions such as reaction temperature, the injection velocity of solution and air, nozzle tip size and concentration of solution. The morphology of produced powder had spherical shape under the most experimental conditions, and concentration of solution. The morphology of produced powder has spherical shape under the most experimental conditions, and the composition and the particle size distribution were almost uniform, which tells the excellence of this spray roasting system. The grain size of most produced powder was below 100 nm. From the above results, it will be possible to produce ultra fine oxide powder from the chloride of Fe, Mn, Ni, Cu and rare earth by using this spray roasting system, and also to produce ultra fine pure metal powder by changing reaction atmosphere.

  • PDF