• Title/Summary/Keyword: Oxidation layer

Search Result 1,137, Processing Time 0.029 seconds

Particle Impact Damage behaviors in silicon Carbide Under Gas Turbine Environments-Effect of Oxide Layer Due to Long-Term Oxidation- (세라믹 가스터빈 환경을 고려한 탄화규소의 입자충격 손상거동-장기간 산화에 따른 산화물층의 영향-)

  • 신형섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.1033-1040
    • /
    • 1995
  • To simulate strength reliability and durability of ceramic parts under gas turbine application environments, particle impact damage behaviors in silicon carbide oxidized at 1673 K and 1523 K for 200 hours in atmosphere were investigated. The long-term oxidation produced a slight increase in the static fracture strength. Particle impact caused a spalling of oxide layer. The patterns of spalling and damage induced were dependent upon the property and impact velocity of the particle. Especially, the difference in spalling behaviors induced could be explained by introducing the formation mechanism of lateral crack and elastic-plastic deformation behavior at impact sit. At the low impact velocity regions, the oxidized SiC showed a little increase in the residual strength due to the cushion effect of oxide layer, as compared with the as-received SiC without oxide layer.

High Temperature Oxidation of TiAl-based XD 45 and XD47 Intermetallics (TiAl계 XD45, XD47 금속간 화합물의 고온산화거동)

  • 심웅식;이동복
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.4
    • /
    • pp.193-198
    • /
    • 2002
  • Alloys of XD45 (Ti45A12Nb2Mn-0.8vol%TiB$_2$) and XD47 (Ti47A12Nb2Mn-0.8vol%TiB$_2$) were oxidized between 800 and $1000^{\circ}C$ in air, and their oxidation characteristics were studied. The oxide scales consisted primarily of an outer $TiO_2$ layer, an intermediate $Al_2$$O_3$-rich layer, and an inner mixed layer of ($TiO_2$+$Al_2$$O_3$). Nb tended to present at the lower part of the oxide scale, whereas Mn at the upper part of the oxide scale. The Pt marker tests indicated that the outer oxide layer grew primarily by the outward diffusion of Ti and Mn, and the inner mixed layer by the inward transport of oxygen.

The Oxidation Behavior of Sintered STS 316L at High-Temperature in the Air (STS 316L 소결체의 대기중 고온산화 거동)

  • Kim, Hye Seong;Lee, Jong Pil;Park, Dong Kyu;Ahn, In Shup
    • Journal of Powder Materials
    • /
    • v.20 no.6
    • /
    • pp.432-438
    • /
    • 2013
  • In this study, analysis on the oxidation behavior was conducted by a series of high-temperature oxidation tests at both $800^{\circ}C$, $900^{\circ}C$ and 1000 in the air with sintered STS 316L. The weight gain of each oxidized specimen was measured, the oxidized surface morphologies and composition of oxidation layer were analyzed with Scanning Electron Microscope-Energy Dispersive x-ray Spectroscopy (SEM-EDS), finally, the phase change and composition of the oxidized specimen were shown by X-Ray Diffraction (XRD). As a result, the weight gain increased sharply at $1000^{\circ}C$ when oxidation test was conducted for 210 hours. Also, a plentiful of pores were observed in the surface oxidation layers at $900^{\circ}C$ for 210 hours. In addition, the following conclusions on oxidation behavior of sintered STS 316L can be obtained: $Cr_2O_3$ can be formed on pores by influxing oxygen through open-pores, $(Fe_{0.6}Cr_{0.4})_2O_3$ can be generated on the inner oxidation layer, and $Fe_2O_3$ was on the outer oxidation layer. Also, $NiFe_2O_4$ could be precipitated if the oxidation time was kept longer.

Effect of KCl(s) and K2SO4(s) on Oxidation Characteristics of the 2.25Cr-1Mo Steel in 10%O2+10%CO2 Gas Environment at 650 ℃ (650 ℃의 10%O2+10%CO2 가스 환경에서 2.25Cr-1Mo강의 산화특성에 미치는 KCl(s)과 K2SO4(s)의 영향)

  • Jung, Kwang-Hu;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.43-50
    • /
    • 2020
  • In this study, the effects of KCl(s) and K2SO4(s) on the oxidation characteristics of 2.25Cr-1Mo steel were investigated for 500 h in 10O2 + 10CO2 (vol%) gas environmen at 650 ℃. Oxidation kinetics were characterized by weight gain, oxide layer thickness, and fitted models for the experiment data were proposed. The fitted models presented considerable agreement with the experimental data. The oxide layer was analyzed using the scanning electron microscope, optical microscope, and energy dispersive X-ray spectroscopy. The oxidation kinetics of 2.25Cr-1Mo steel with KCl and K2SO4 coatings showed significantly different oxidation kinetics. KCl accelerated the oxidation rate very much and had linear oxidation behavior. In contrast, K2SO4 had no significant effect, which had parabolic kinetics. The oxide layer was commonly composed of Fe2O3, Fe3O4, and FeCr2O4 spinel. KCl strongly accelerated the oxidation rates of 2.25Cr-1Mo steel in the high-temperature oxidation environment. Conversely, K2SO4 had little effect on the oxidation rates.

Effects of Ti on High Temperature Oxidation of Ni-Based Superalloys (Ni 기지 초내열합금의 고온산화 저항성에 미치는 Ti의 영향)

  • Park, Si-Jun;Seo, Seong-Moon;Yoo, Young-Soo;Jeong, Hi-Won;Jang, HeeJin
    • Corrosion Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.129-134
    • /
    • 2016
  • The effects of Ti on the high temperature oxidation of Ni-based superalloys were investigated by cyclic oxidation at $850^{\circ}C$ and $1000^{\circ}C$. The oxide scale formed at $850^{\circ}C$ consists of $Cr_2O_3$, $Al_2O_3$, and $NiCr_2O_4$ layers, while a continuous $Al_2O_3$ layer was formed at $1000^{\circ}C$. The oxidation rate of the alloy with higher Ti content was higher than the alloy with less Ti content at $850^{\circ}C$, possibly due to the increase in the metal vacancy concentration in the $Cr_2O_3$ layer involved by incorporation of $Ti^{4+}$. However, Ti improved the oxidation resistance of the superalloy at $1000^{\circ}C$ by reducing oxygen vacancy concentration in $Al_2O_3$ layer.

Melt-out Behaviour of 25wt% Al-Alloyed Ductile Iron (25wt% A1이 첨가된 구상흑연주철의 용손 거동)

  • Gwon, Gi-Hyeon;Lee, Jong-Hun;Yu, Wi-Do
    • 연구논문집
    • /
    • s.34
    • /
    • pp.139-146
    • /
    • 2004
  • In this study, effect of temperature and time on melt-out of 25wt% Al-alloyed ductile iron has been investigated. The oxidation tests were carried out in a tube furnace at $800^\circC$, $930^\circC$, and $1000^\circC$ for lh, 5h, 10h, 50h. The microstructure, microhardness, and $Al_2O_3$ layer of oxidation-treated 25wt% Al-alloyed ductile iron samples (10 x 10 x 10 mm) were investigated. Phase identification was performed by X-ray diffraction(XRD) and EDS. The oxidation-treated 25wt% Al-alloyed ductile iron samples at $930^\circC$ for lh, 5h, 10h and KS GCD 500 were used for melt-out test in an Al alloy melt. The melt-out test results showed that oxidation tested sample at $930^\circC$ for 5h which on the whole forms $2-3\mum$ $Al_2O_3$ layer showed lowest melt-out depth. It was observed showed that appropriate Al203 layer can affect melt-out behaviors.

  • PDF

High Temperature Oxidation of Ti-43%Al-2%W-0.1%Si Alloys (Ti-43%Al-2%W-0.1%Si 합금의 고온산화)

  • 심웅식;이동복
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.2
    • /
    • pp.128-134
    • /
    • 2003
  • Alloys of Ti-43%Al-2%W-0.1%Si were oxidized isothermally and cyclically between $900^{\circ}C$ and$ 1050^{\circ}C$, and their oxidation characteristics were studied. During isothermal tests, the alloys oxidized slowly up to 100$0^{\circ}C$, but fast at $1050^{\circ}C$. Though the scale adherence was not good above $900^{\circ}C$, the alloys displayed better oxidation behavior than unalloyed TiAl alloys. The oxide scales consisted primarily of an outer $TiO_2$ layer, intermediate $Al_2$$O_3$-rich layer, and an inner mixed layer of (TiO$_2$ $+Al_2$$O_3$). Tungsten was present mainly at the lower part of the oxide scale, while Si over the whole oxide scale.

A selective formation of high-quality fully recessed oxide (양질의 FRO(fully recessed oxide)의 선택적 형성)

  • 류창우;심준환;이준희;이종현
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.7
    • /
    • pp.149-155
    • /
    • 1996
  • A new technique wasdeveloped which obtains selectively the htick fully recessed oxidized porous silicon layer (OPSL) with good dielectric property. The porous silicon layer was ocnverted to thick fully recessed oxide (FRO) with 3-step (1${\mu}$m, 1.5${\mu}$m, 1.8${\mu}$m) by multi-step thermal oxidation (after 400$^{\circ}$C, 1 hour by dry oxidation, 700$^{\circ}$C, 1 hour and then 1100$^{\circ}$C, 1 hour by wet oxidation). The breakdwon field of the FRO was about 2.5MV/cm and the leakage current was several pA ~ 100 pA in the range of 0 of 90 pF. The progress of oxidation of a porous silicon layer was studied by examining the infrared abosrption spectra. The refractive index (1.51) of the fRO, which was measured by ellipsometer, was comparable to that of the thermally grown silicon dioxide (1.46). The etching rate (1600${\AA}$/min) of the FRO was also almost equal to that of the thermal oxide.

  • PDF

Effects of Cr and Nb on the nigh Temperature Oxidation of TiAl

  • D.B. Lee;K.B. Park;M. Nakamura
    • Transactions of Materials Processing
    • /
    • v.8 no.3
    • /
    • pp.319-319
    • /
    • 1999
  • From isothermal and cyclic oxidation tests on thermomechanically treated Ti-5%Al, Ti47%Al-4%Cr, and Ti-48%Al-2%Cr-2%Nb alloys at 800, 900, 1000℃ in air, it was found that Ti-48%Al-2%Cr-2%Nb and Ti-47%Al-4%Cr had the best and the worst oxidation resistance, respectively. The oxide scales consisted primarily of TiO₂and Al₂O₃, with and without a small amount of dissolved Cr and 7b ions, depending on the alloy composition. These ions were slightly enriched inside the inner oxide layer, and strongly enriched around the scale-matrix interface. The outer TiO₂-rich layer was formed by the outward diffusion of Ti ions, while the inner (TiO₂+A1₂O₃,) mixed layer was formed by the inward transport of oxygen. The outward movement of Al ions farmed the intermediate Al₂O₃-rich Iayer, above talc prepared alloys.

Morphology and Thermal Oxidation Behavior of Graphene Supported on Atomically Flat Mica Substrates

  • Go, Taek-Yeong;Sim, Ji-Hye;Ryu, Sun-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.459-459
    • /
    • 2011
  • Graphene has many fascinating material properties such as high electron mobility, high optical transparency, excellent thermal conductivity, superior Young's modulus, etc. Several studies have recently found that single-layer graphene is chemically more reactive than few-layer graphene when supported on silicon dioxide substrates with sub-nm roughness. In this study, we have investigated the influence of substrates on chemical reactivity of graphene. Morphology and thermal oxidation behavior of graphene on atomically flat mica substrates were studied by atomic force microscopy (AFM) and Raman spectroscopy compared to graphene on SiO2/Si substrates. Notably, oxidation of single-layer graphene proceeds more slowly on mica than SiO2/Si. Detailed analysis led to a conclusion that deformation along the out-of-plane direction enhances reactivity of graphene.

  • PDF