• Title/Summary/Keyword: Oxidation Rate

Search Result 1,542, Processing Time 0.737 seconds

Mixed Carbon/Polypyrrole Electrodes Doped with 2-Naphthalenesulfonic Acid for Supercapacitor (2-Naphthalenesulfonic Acid로 도핑된 혼합카본/폴리피롤을 이용한 Supercapacitor용 전극)

  • Jang, In-Young;Kang, An-Soo
    • Korean Chemical Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.425-431
    • /
    • 2005
  • New type of supercapacitor using high surface area activated carbons mixed with high conductivity polypyrrole (Ppy) has been prepared in order to achieve low impedance and high energy density. Mixed carbons of BP-20 and MSP-20 were used as the active electrode material, and polypyrrole doped with 2-naphthalenesulfonic acid (2-NSA) and carbon black (Super P) as conducting agents were added to activated carbons in order to enhance good electric conductivity. Electrodes prepared with the activated electrode materials and the conducting agents were added to a solution of organic binder [P(VdF-co-HFP) / NMP]. The ratio of optimum electrode composition was 78 : 17 : 5 wt.% of (MSP20 : BP-20=1 : 1), (Super P : Ppy=10 : 7) and P(VdF-co-HFP) respectively. The performance of unit cell with addition of 7 wt% Ppy have shown specific capacitance of 28.02 F/g, DC-ESR of $1.34{\Omega}$, AC-ESR of $0.36{\Omega}$, specific energy of 19.87 Wh/kg and specific power of 9.77 kW/kg. With addition of Ppy, quick charge-discharge of unit cell was possible because of low ESR, low charge transfer resistance and quick reaction rate. And good stability up to 500 chargedischarge cycles were retained about 80% of their original capacity. It was concluded that the specific capacitance originated highly from compound phenomena of the pseudocapacitance by oxidation-reduction of polypyrrole and the nonfaradaic capacitance by adsorption-desorption of activated carbons.

Disposal of CO in CO-Poisoning Dogs (일산화탄소중독견(一酸化炭素中毒犬) 체내(體內)에서의 일산화탄소처리능(一酸化炭素處理能)에 관(關)하여)

  • Ryo, Ung-Yun;Kang, Bann
    • The Korean Journal of Physiology
    • /
    • v.2 no.2
    • /
    • pp.93-99
    • /
    • 1968
  • The Present study attempted to analyze the fate of CO diffused into the circulating blood through the alveoli. Dogs were induced to CO poisoning by rebreathing CO gas mixture contained in Krog's spirometer, by closed circuit method, for 60 minutes. The spirometer was filled initially with 282 ml of CO and 20 liters of air and oxygen, so the composition of gases were arranged as 1.4% in CO and 50% in $O_2$ at the begining of the rebreathing. Oxygen was added corresponding to the utilization of $O_2$ by the animal in proceeding of the experiment. At 60th minutes of CO rebreathing, the concentration of CO in arterial blood and in mixed venous blood were analysed and compared with each other after the CO contents were corrected with the hematocrit measured in the arterial and mixed venous blood. The distribution of CO gas to other tissues was estimated by the analysis of CO diffused into the cystic bile and into the peritoneal gas pocket which was formed by injection of 300 ml air into the peritoneal cavity prior to the CO gas rebreathing. The blood volume was measured by dilution method using $^{51}Chromium$ tagged red cells. CO amount vanished in the animal body was calculated by subtraction of total CO content in blood stream and the CO remained in closed circuit breathing system from the CO amount given to the breathing system at the begining of the experiment. Results obtained are summarized as follows: 1. The content of CO corrected by the hematocrit value was slightly less in mixed venous blood than in arterial blood. The amount of CO diffused into the cystic bile and into the peritoneal cavity was averaged to 0.1% and 0.4% of the CO amount in 100 ml of blood, respectively. 2. For 60 minutes of CO rebreathing, CO-hemoglobin saturation reached about 77% at the 60th minutes, CO amount vanished in the experimental animal averaged 36.1 ml/dog/hr., or 21% of the total CO volume in the blood stream. The average vanishing rate of CO during 60 minutes of CO rebreathing per kg of body weight was 2.71 ml/hr. Production of CO measured in ten dogs under hypoxic condition averaged 0.023 ml/kg/hr. The major part of the CO vanished in the dogs seemed to be oxidized to $CO_2$ by various tissues of the animal. The conclusion might be delivered as such oxidation of CO to $CO_2$ by animal tissues can play a role in part of the process of recovery and protection of animal from CO-poisoning.

  • PDF

A Study on the Solubilisation of Excess Sludge using Microbubble Ozone (잉여슬러지 가용화를 위한 마이크로버블 오존 이용에 관한 연구)

  • Lee, Shun-Hwa;Jung, Kye-Ju;Kwon, Jin-Ha;Lee, Se-Han
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.4
    • /
    • pp.325-332
    • /
    • 2010
  • This study was conducted with the experiment of solubilisation of excess sludge by microbubble ozone process. To improve ozone contact efficiency, microbubble ozones which its diameter were the avearge 30 ${\mu}m$, microbubble size less than 40 ${\mu}m$ occupied about over 90% of all. In treating sludge using microbubble ozones, in case microbubble ozones are injected at microbubble ozone dosage of 0.34 g $O_3/g$ SS or less regardless of sludge concentration, microbubble ozone consumption rate was found to be 100% with no emission of waste ozones. In treating sludges by each concentration, in case the initial SS concentration of sludge is set to 6,447 mg/L, 5,557 mg/L, 3,180 mg/L, 1,092 mg/L and 515 mg/L, the amount of removed SS tended to increase with increase in initial SS concentration for the same microbubble ozone dosage, and treatment of sludge with high initial SS concentration was effective in raising the oxidation efficiency of microbubble ozones. On the other hand, as a result of reviewing acid, alkali and microbubble ozone treatment as composite treatment of sludge, use of acid treatment for the pre-treatment of microbubble ozone was more effective than alkali treatment, and in case of treatment at microbubble ozone dosage 0.05g $O_3/g$ SS with the concentration of sulfuric acid infused in the sludge, the amount of removed SS, 153.9 g, was 1.9 times more than 81.2 g the amount of single treatment of microbubble ozone.

Oxidative Degradation of the Herbicide Dicamba Induced by Zerovalent Iron (Zerovalent Iron에 의해 유도되는 제초제 Dicamba의 산화적 분해)

  • Lee, Kyung-Hwan;Kim, Tae-Hwa;Kim, Jang-Eok
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.1
    • /
    • pp.86-91
    • /
    • 2008
  • Dicamba(3,6-dichloro-2-methoxybenzoic acid) is used to control for pre and post-emergence of annual and perennial broad-leaf weeds. It is very soluble in water and highly mobile, acidic herbicide. So it is easily moved and detected in groundwater. Zerovalent iron(ZVI) has been used for the reductive degradation of certain compounds through amination of nitro-substituted compounds and dechlorination of chloro-substituted compounds. In this study, we investigated the potential of ZVI for the oxidative degradation of dicamba in water. The degradation rate of dicamba by ZVI was more rapidly increased in pH 3.0 than pH 5.0 solution. The degradation percentage of dicamba was increased with increasing amount of ZVI from 0.05% to 1.0%(w/v) and reached above 90% within 3 hours of reaction. As a result of identification by GC-MS after derivatization with diazomethane, we obtained three degradation products of dicamba by ZVI. They were identified 4-hydroxy dicamba or 5-hydroxy dicamba, 4,5-dihydroxy dicamba and 3,6-dichloro-2-methoxyphenol. 4-Hydroxy dicamba or 5-hydroxy dicamba and 4,5-dihydroxy dicamba are hydroxylation products of dicamba. 3,6-dichloro-2-methoxyphenol is hydroxyl group substituted compound instead of carboxyl group in dicamba. We also confirmed the same degradation products of dicamba in the Fenton reaction which is one of oxidation processes using ferric sulfate and hydrogen peroxide. But we could not find out the dechlorinated degradation products of dicamba by ZVI.

Degradation and Metabolism of Phorate in Soil (토양중(토양중) Phorate의 분해(분해)와 대사(대사))

  • Lee, Hae-Keun;Hong, Jong-Uck
    • Applied Biological Chemistry
    • /
    • v.26 no.2
    • /
    • pp.97-103
    • /
    • 1983
  • To get further information on the behavior of phorate(0,0-diethyl S-ethylthiomethyl phosphorodithioate) in soil under the subtropical conditions, a field experiment has been conducted. Phorate granule (10%) was applied to silt loam soil at the rate of 40kg a.i./ha and incorporated to 10cm soil depth. Residues of phorate and its metabolites in soil were determined with GLC and confirmed qualitatively with TLC. Phorate was rapidly oxidized to its sulfoxide and sulfone. Therefore, main metabolic pathway of phorate in soil was the oxidation of phorate to phorate sulfoxide and sulfone. Phorate sulfoxide and sulfone were relatively more persistent than phorate itself. Phoratoxon was detected at low level only up to 30 days after treatment and its sulfoxide and sulfone were not detected during the whole experimental period. Toluene-acetonitrile-nitromethane(40 : 30 : 30, v/v/v) solvent system separated satisfactorily phorate and its five metabolites. Most of the residues was found in the initial incorporation depth $(0{\sim}10cm)$. Consequently, insecticides showed a little downward movement.

  • PDF

Biodegradation of Phthalic acid by White rot Fungus, Polyporus brumalis (백색부후균 Polyporus brumalis에 의한 프탈산의 분해)

  • Lee, Soo-Min;Park, Ki-Ryung;Lee, Sung-Suk;Kim, Myung-Kil;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.1 s.129
    • /
    • pp.48-57
    • /
    • 2005
  • Phthalate esters are known as plasticizers and some of them suspected as endocrine disrupting chemicals. In this study, in order to identify the mechanism of phthalate esters degradation by white rot fungus, phthalic acid, which is major metabolite in the biodegradation of phthalate esters, was used. Phthalic acid 50 ppm was treated in culture medium with Polyporus brumalis. The availability of ABTS oxidation was different from control and phthalic acid treated group after 4 days of incubation. The activity was gradually increased in control group, but not in phthalic acid treated group. Especially, esterase activity of control group was maximized at 10 days of incubation, and then decreased while the activity of phthalic acid treated group was increased. Glucose was used as a carbon source, and the difference of glucose consumption by control and phthalic acid treated group was not significant. However, after 6 days of incubation the residual glucose in culture medium was rapidly decreased. The consumption rate of phthalic acid treated group was lower than control. These results might indicate that the absorption of phthalic acid in culture medium was occurred by mycelium and metabolized through some pathways as that of glucose was. To clearify the chemical modification of phthalic acid in culture medium, phthalic acid was reacted under in vitro condition which mycelium was excluded. The metabolites were analyzed by GC/MS. The results showed that phthalic acid was converted to phthalic acid anhydride by the extracellular enzymes of P. brumalis.

Tandem Mass Spectrometric Analysis for Disorders in Amino, Organic and Fatty Acid Metabolism : 2 Years of SCL Experience in Korea

  • Yoon, Hye-Ran;Lee, Kyung Ryul
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.3 no.1
    • /
    • pp.86-93
    • /
    • 2003
  • Background : The SCL began screening of newborns and high risk group blood spots with tandem mass spectrometry (MS/MS) in April 2001. Our goal was to determine approximate prevalence of metabolic disorders, optimization of decision criteria for estimation of preventive effect with early diagnosis. This report describes the ongoing effort to identify more than 30 metabolic disorders by MS/MS in South Korea. Methods : Blood spot was collected from day 2 to 30 (mostly from day 2 to 10) after birth for newborn. Blood spot of high risk group was from the pediatric patients in NICU, developmental delay, mental retardation, strong family history of metabolic disorders. One punch (3.2 mm ID) of dried blood spots was extracted with $150{\mu}L$ of methanol containing isotopically labelled amino acids (AA) and acylcarnitines (AC) internal standards. Butanolic HCl was added and incubated at $65^{\circ}C$ for 15 min. The butylated extract was introduced into the inlet of MS/MS. Neutral loss of m/z 102 and parent ion mode of m/z 85 were set for the analyses of AA and AC, respectively. Diagnosis was confirmed by repeating acylcarnitine profile, urine organic acid and plasma amino acid analysis, direct enzyme assay, or molecular testing. Results : Approximately 31,000 neonates and children were screened and the estimated prevalence (newborn/high risk group), sensitivity, specificity and recall rate amounted to 1:2384/1:2066, 96.55%, 99.98%, and 0.73%, respectively. Confirmed 28 (0.09%) multiple metabolic disorders (newborn/high risk) were as follows; 13 amino acid disorders [classical PKU (3/4), BH4 deficient-hyperphenylalaninemia (0/1), Citrullinemia (1/0), Homocystinuria (0/2), Hypermethioninemia (0/1), Tyrosinemia (1/0)], 8 organic acidurias [Propionic aciduria (2/1), Methylmalonic aciduria (0/1), Isovaleric aciduria (1/1), 3-methylcrotonylglycineuria (1/0), Glutaric aciduria type1 (1/0)], 7 fatty acid oxidation disorders [LCHAD def. (2/2), Mitochondrial TFP def. (0/1), VLCAD def. (1/0), LC3KT def. (0/1). Conclnsion : The relatively normal development of 10 patients with metabolic disorders among newborns (except for the expired) demonstrates the usefulness of newborn screening by MS/MS for early diagnosis and medical intervention. However, close coordination between the MS/MS screening laboratory and the metabolic clinic/biochmical geneticists is needed to determine proper decision of screening parameters, confirmation diagnosis, follow-up scheme and additional tests.

  • PDF

Evaluation of pure oxygen with MBR(Membrane Bio Reactor) process for anaerobic digester effluent treatment from food waste (순산소의 MBR(Membrane Bio Reactor) 공정 적용을 통한 음식물류 폐기물 혐기성소화 유출수 처리 평가)

  • Park, Seyong;Kim, Moonil;Park, Seonghyuk
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.3
    • /
    • pp.5-16
    • /
    • 2021
  • In this study, the applicability of the MBR(Membrane Bio Reactor) process of oxygen dissolve was evaluated through comparison and evaluation of the efficiency of oxygen dissolve device and conventional aeration device in the explosive tank within the MBR process. The organic matter and ammonia oxidation by oxygen dissolve device were evaluated, and the efficiency of persaturation was evaluated by applying real waste water (anaerobic digester effluent treatement from food waste). SCOD and ammonia removal rates for oxygen dissolve device and conventional aeration device methods were similar. However, it was determined that the excess sludge treatment cost could be reduced as the yield of microorganisms by oxygen dissolve device is about 0.03 g MLSS-produced/g SCOD-removed lower than that of microorganisms by conventional aeration device. The removal rates of high concentrations of organic matter (4,000 mg/L) and ammonia (1,400 mg/L) in anaerobic digester effluent treatment from food waste were compared to the conventional aeration device and the oxygen dissolve device organic matter removal rate was approximately 13% higher than that of the conventional aeration device. In addition, for MLSS, the conventional aeration device was 0.3 times higher than for oxygen dissolve device. This is believed to be due to the high progress of sludge autooxidation because the dissolved oxygen is sufficiently maintained and supplied in the explosive tank for oxygen dissolve device. Therefore, it was determined that the use of oxygen dissolve device will be more economical than conventional aeration device as a way to treat wastewater containing high concentrations of organic matter.

An Experimental Study on the Development of EMP Shielding Concrete Using Electric Furnace Oxidized Slag Aggregate (전기로산화슬래그 골재를 사용한 EMP차폐 콘크리트 개발에 관한 실험적 연구)

  • Min, Tae-Beom;Cho, Hyeong-Kyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.514-520
    • /
    • 2021
  • In this study, EMP shielding performance was evaluated using electric furnace oxidized slag to give EMP shielding performance to concrete among the most used materials in construction sites. As a result of the evaluation, the component of the electric furnace oxidation slag was found to have an Fe2O3 content of 34%, and it was also found to contain an MgO component of about 4.8%. In addition, as a result of conducting an aggregate stability evaluation due to concerns about expansion due to MgO components, it is considered to be suitable for the KS standard. EMP shielding performance evaluation result showed that there was no correlation in EMP shielding performance according to compressive strength, and that general aggregates did not have EMP shielding. However, it was found that the aggregate using the furnace oxidized slag had excellent EMP shielding performance, and the shielding performance improved as the thickness increased. As a result of the durability evaluation, it was found that the EMP shielding concrete has the durability of abortion compared to the general concrete. Through this, it is thought that it will be good to improve the shielding rate if concrete is manufactured using electric furnace oxide slag when constructing EMP shielding structures in the future.

Characterization of CH4-oxidizing and N2O-reducing Bacterial Consortia Enriched from the Rhizospheres of Maize and Tall Fescue (옥수수와 톨페스큐 근권 유래의 메탄 산화 및 아산화질소 환원 세균 컨소시움 특성)

  • Lee, Soojung;Kim, Seoyoung;Kim, Ye Ji;Lee, Yun-Yeong;Cho, Kyung-Suk
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.2
    • /
    • pp.225-238
    • /
    • 2021
  • CH4-oxidizing and N2O-reducing bacterial consortia were enriched from the rhizosphere soils of maize (Zea mays) and tall fescue (Festuca arundinacea). Illumina MiSeq sequencing analysis was performed to comparatively analyze the bacterial communities of the consortia with those of the rhizosphere soils. Additionally, the effect of root exudate on CH4 oxidation and N2O reduction activities of the microbes was evaluated. Although the inoculum sources varied, the CH4-oxidizing and N2O-reducing consortia derived from maize and tall fescue were similar. The predominant methanotrophs in the CH4-oxidizing consortia were Methylosarcina, Methylococcus, and Methylocystis. Among the N2O-reducing consortia, the representative N2O-reducing bacteria were Cloacibacterium, Azonexus, and Klebsiella. The N2O reduction rate of the N2O-reducing consortium from maize rhizosphere and tall fescue rhizosphere increased by 1.6 and 2.7 times with the addition of maize and tall fescue root exudates, respectively. The CH4 oxidization activity of the CH4-oxidizing consortia did not increase with the addition of root exudates. The CH4-oxidizing and N2O-reducing consortia can be used as promising bioresources to mitigate non-CO2 greenhouse gas emissions during remediation of oil-contaminated soils.