Biodegradation of Phthalic acid by White rot Fungus, Polyporus brumalis

백색부후균 Polyporus brumalis에 의한 프탈산의 분해

  • Lee, Soo-Min (Dept. of Forest Science, College of Agriculture & Life Sciences, Seoul National University) ;
  • Park, Ki-Ryung (Dept. of Forest Science, College of Agriculture & Life Sciences, Seoul National University) ;
  • Lee, Sung-Suk (Dept. of Wood Chemistry & Microbiology, Korea Forest Research Institute) ;
  • Kim, Myung-Kil (Dept. of Wood Chemistry & Microbiology, Korea Forest Research Institute) ;
  • Choi, In-Gyu (Dept. of Forest Science, College of Agriculture & Life Sciences, Seoul National University)
  • 이수민 (서울대학교 농업생명과학대학 산림과학부) ;
  • 박기령 (서울대학교 농업생명과학대학 산림과학부) ;
  • 이성숙 (국립산림과학원) ;
  • 김명길 (국립산림과학원) ;
  • 최인규 (서울대학교 농업생명과학대학 산림과학부)
  • Received : 2004.11.22
  • Accepted : 2004.12.15
  • Published : 2005.01.25

Abstract

Phthalate esters are known as plasticizers and some of them suspected as endocrine disrupting chemicals. In this study, in order to identify the mechanism of phthalate esters degradation by white rot fungus, phthalic acid, which is major metabolite in the biodegradation of phthalate esters, was used. Phthalic acid 50 ppm was treated in culture medium with Polyporus brumalis. The availability of ABTS oxidation was different from control and phthalic acid treated group after 4 days of incubation. The activity was gradually increased in control group, but not in phthalic acid treated group. Especially, esterase activity of control group was maximized at 10 days of incubation, and then decreased while the activity of phthalic acid treated group was increased. Glucose was used as a carbon source, and the difference of glucose consumption by control and phthalic acid treated group was not significant. However, after 6 days of incubation the residual glucose in culture medium was rapidly decreased. The consumption rate of phthalic acid treated group was lower than control. These results might indicate that the absorption of phthalic acid in culture medium was occurred by mycelium and metabolized through some pathways as that of glucose was. To clearify the chemical modification of phthalic acid in culture medium, phthalic acid was reacted under in vitro condition which mycelium was excluded. The metabolites were analyzed by GC/MS. The results showed that phthalic acid was converted to phthalic acid anhydride by the extracellular enzymes of P. brumalis.

플라스틱 가소제로 사용되고 있는 프탈레이트류(phthalate esters)의 백색부후균에 의한 분해 특성을 확인하기 위해 본 연구에서는 프탈레이트 제조에 사용되고 있는 전구체로서 프탈산(phthalic acid)의 분해를 Polyporus brumalis를 이용하여 확인하였다. 프탈산(phthalic acid) 50 ppm을 액상 배지에 처리하고 균체에 의한 프탈산의 감소율을 확인한 결과, 배양 4일 후부터 감소하기 시작하여 배양 24일에는 배지 내에서 검출되지 않아 완전히 분해되었음을 확인하였고, 배양 기간 동안 리그닌 분해 효소 활성 변화는 배양 10일 후부터 대조구에 비해 프탈산 처리구의 효소 활성이 저조하게 나타남을 확인하였다. Esterase의 경우에는 대조구에서 보여지는 효소 활성 변화와는 달리 배양 10일 이후에 지속적으로 증가하는 것을 확인하였다. 영양원으로 사용된 glucose는 배양 6일 째까지는 대조구와 프탈산 처리구간에 감소율이 유사하였으나, 이후 배양 시간이 연장됨에 따라 배지 내에서 급격하게 감소하는 것을 확인하여 대조구에 비해 프탈산 처리구가 glucose 소모율이 낮았다. 이는 프탈산이 균체에 흡수된 후에 대사작용에 이용되기 때문이라 사료된다. 또한, 균체외 효소에 의한 프탈산의 화학적 구조변화를 GC/MS를 이용하여 분석한 결과 반응 12시간 이내에 무수프탈산으로 탈수 반응이 급격히 진행되는 것을 확인하였다.

Keywords

Acknowledgement

Supported by : 산림청

References

  1. 안세희, 최인규. 1998. 목질 분해균에 의한 4,5,6-tri-guaiacol의 미생물 분해. 목재공학 26(3): 63-72
  2. 이수민, 구본욱, 이재윈, 최돈하, 정의배, 최인규. 2004. 옥틸페놀 (4-t-octylphenol)의 Basidioradulum molare와 Schizopora paradoxa에 의한 분해 및 에스트로겐 성 저감 효과. 목재공학. 32: 27-35
  3. 최인규, 안세희. 1998. 목질 분해균에 의한 penta- chlorophenol의 미생물 분해, 목재공학 26(3): 53-62
  4. 최인규, 이재원, 최돈하. 2002. Monochlorophenol 의 목질 분해균에 의한 분해 특성. 한국환경농학회지 21(4): 261-268
  5. http://www.atsdr.cdc.gov/clist-supportdoc.html
  6. Bradford, M. M. 1976. A rapid and sensitive for the quantitation of microgram quantitites of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254
  7. Chatterjee, S. and T. K. Dutta. 2003. Metabolism of butyl benzyl phthalate by Gordonia sp. strain MTCC 4818. Biochem. Biophysics. Res. Comm. 309: 36-43 https://doi.org/10.1016/S0006-291X(03)01513-4
  8. Fett, W. F., H. C. Gerad, R. A. Moreau, S. F. Osman, and L. E. Jones. 1992. Cutinase production by Streptomyces spp. Curr. Microbiol. 25: 165-171 https://doi.org/10.1007/BF01571025
  9. Furusawa, S., S. Nakai, and M. Hosomi. 2000. Microbial degradation of 4-Nonylphenol. J. Jpn Soc. Water Environ. 23: 243-245 https://doi.org/10.2965/jswe.23.243
  10. Glenn, J. K., L. Akileswaran, and M. H. Gold. 1986. Mn(II) oxidation is the principal function of the extracellular Mn-perxoidase from Phanerochaete chrysosporium. Arch. Biochem. Biophysics. 251:688-696 https://doi.org/10.1016/0003-9861(86)90378-4
  11. Gutierrez A, J. C. del Rio, M. J. Martinez-Inigo, M. .J. Martinez, and A. T. Martinez. 2002. Production of new unsaturated lipids during wood decay by ligninolytic basidiomycetes. Appl. Environ. Microbiol. 68: 1344-1350 https://doi.org/10.1128/AEM.68.3.1344-1350.2002
  12. Hammel, K. E., B. Kalyanaraman, and T. K. Kirk. 1986. Oxidation of polycyclic aromatic hydrocarbons and dibenzo[p]dioxins by Phanerochaete chrysosporium ligninase. J. Biol. Chem. 261: 16948-16952
  13. Kim, Y. H., J. W. Lee, J. Y. Ahn, M. B. Gu, and S. H. Moon. 2002. Enhanced degradation of an endocrine- disrupting chemical, butyl benzyl phthalate by Fusarium oxysporum f. sp. pisi cutinase. Appl. Environ. Microbiol. 68: 4684-4688 https://doi.org/10.1128/AEM.68.9.4684-4688.2002
  14. Lee, S. M., B. K. Koo, M. K. Kim, D. H. Choi, E. J. Hong, E. B. Jeung, and I. G. Choi. 2004. Biodegradation of dibutylphthalate by white rot fungi and evaluation on its estrogenic activity. Enzym. Microbial Technol. 35: 417-423 https://doi.org/10.1016/j.enzmictec.2004.06.001
  15. Lobos, J. H., T. K. Leib, and T. M. Su. 1992. Biodegradation of bisphenol A and other bisphenols by a gram-negative aerobic bacterium, Appl. Environ. Microbiol. 58: 1823-1831
  16. Miller G. L. 1958. Use of dinitrosalicylic acid reagent for determination of reducing sugar, Anal. Biochem. 1: 426-506
  17. Ronen, Z. and A. Abeliovich. 2000. Anaerobicaerobic process for microbial degradation of tetrabromophenol A. Appl, Environ. Microbiol. 66:2372-2377 https://doi.org/10.1128/AEM.66.6.2372-2377.2000
  18. Sato A, H. Justica, .J. W. Wray, and C. Sonnenschein. 1991. p-Nonylphenol and estrogenic xenobiotic released from 'modified' polystyrene, Environ. Health Perspect. 92: 167-173 https://doi.org/10.2307/3431154
  19. Staples, C. A., D. R. Peterson, T. F. Parkerton, and W. J. Adams. 1997. The Environmental Fate of Phthalate Esters: a literature review. Chemosphere 35: 667-749 https://doi.org/10.1016/S0045-6535(97)00195-1
  20. Tien, M. and T. K. Kirk. 1984. Lignin-degrading enzyme from Pbanerocbaete cbrysosporium: purification, characterization, and catalytic properties of a unique $H_20_2$-requiring oxygenase, Pro. Nat'l Acad. Sci. USA 81: 2280-2284