DOI QR코드

DOI QR Code

Oxidative Degradation of the Herbicide Dicamba Induced by Zerovalent Iron

Zerovalent Iron에 의해 유도되는 제초제 Dicamba의 산화적 분해

  • Lee, Kyung-Hwan (Division of Applied Biology and Chemistry, College of Agricultural and Life Sciences, Kyungpook National University) ;
  • Kim, Tae-Hwa (Division of Applied Biology and Chemistry, College of Agricultural and Life Sciences, Kyungpook National University) ;
  • Kim, Jang-Eok (Division of Applied Biology and Chemistry, College of Agricultural and Life Sciences, Kyungpook National University)
  • 이경환 (경북대학교 농업생명과학대학 응용생물화학부) ;
  • 김태화 (경북대학교 농업생명과학대학 응용생물화학부) ;
  • 김장억 (경북대학교 농업생명과학대학 응용생물화학부)
  • Published : 2008.03.31

Abstract

Dicamba(3,6-dichloro-2-methoxybenzoic acid) is used to control for pre and post-emergence of annual and perennial broad-leaf weeds. It is very soluble in water and highly mobile, acidic herbicide. So it is easily moved and detected in groundwater. Zerovalent iron(ZVI) has been used for the reductive degradation of certain compounds through amination of nitro-substituted compounds and dechlorination of chloro-substituted compounds. In this study, we investigated the potential of ZVI for the oxidative degradation of dicamba in water. The degradation rate of dicamba by ZVI was more rapidly increased in pH 3.0 than pH 5.0 solution. The degradation percentage of dicamba was increased with increasing amount of ZVI from 0.05% to 1.0%(w/v) and reached above 90% within 3 hours of reaction. As a result of identification by GC-MS after derivatization with diazomethane, we obtained three degradation products of dicamba by ZVI. They were identified 4-hydroxy dicamba or 5-hydroxy dicamba, 4,5-dihydroxy dicamba and 3,6-dichloro-2-methoxyphenol. 4-Hydroxy dicamba or 5-hydroxy dicamba and 4,5-dihydroxy dicamba are hydroxylation products of dicamba. 3,6-dichloro-2-methoxyphenol is hydroxyl group substituted compound instead of carboxyl group in dicamba. We also confirmed the same degradation products of dicamba in the Fenton reaction which is one of oxidation processes using ferric sulfate and hydrogen peroxide. But we could not find out the dechlorinated degradation products of dicamba by ZVI.

물에 대한 용해도가 높아 수질오염을 시킬 가능성이 있는 제초제 dicamba를 분해시키기 위하여 zerovalent iron 및 Fenton reagent를 처리하여 분해되는 정도와 분해산물을 동정하였다. ZVI에 의한 dicamba의 분해 반응속도는 pH 3.0이 pH 5.0 조건보다 빠르게 진행되었으며 처리된 ZVI의 양이 0.05%에서 1.0%(w/v)로 증가됨에 따라 분해율이 증가되어 반응 3시간 이내에 90% 이상이 분해되었다. 그러나 ZVI의 처리량이 증가됨에 따라 반응후 용액의 pH 상승으로 인하여 dicamba의 분해효율은 증가되지 않았다. ZVI 처리에 의해 생성된 dicamba의 분해 산물을 diazomethane 유도체화 과정을 거쳐 GC-MS로 분석한 결과 dicamba 구조내의 잔기가 없는 부분에 hydroxylation된 형태인 4-hydroxy dicamba 혹은 5-hydroxy dicamba, 4,5-dihydroxy dicamba 그리고 dicamba 구조내의 carboxyl기가 hydroxyl기로 전환된 형태인 3,6-dichloro-2-methoxyphenol로 예상되는 compound를 확인하였다. 이러한 반응산물은 ferric sulfate를 이용한 Fenton 반응에서 조사된 dicamba의 분해 산물과 동일한 것으로 확인되었다. 그러나 ZVI에 의한 dicamba의 탈염소화 분해산물은 확인되지 않았다. 따라서 호기적 조건 하에서 ZVI 처리에 의해 유도되는 제초제 dicamba의 주된 분해 경로는 환원반응보다는 반응용액 중에 존재하는 $O_2$$Fe^0$의 산화에 의해 생성된 $Fe^{2+}$ 사이의 Fenton 반응과 같은 산화반응인 것으로 사료된다.

Keywords

References

  1. McBride, Murray B. (1994), Environmental Chemistry of Soild, Oxford University Press Inc. New York, U.S.A. p.342-390
  2. Wells, Martha J.M. and Yu, Lan Zhou (2000) Solid- phase extraction of acidic herbicides, Journal of Chromatography A, 885, 237-250 https://doi.org/10.1016/S0021-9673(00)00206-5
  3. Milligan, Peter W. and Haggblom, Max M. (1999) Biodegradation and biotransformation of dicamba under different reducing conditions, Environ. Sci. Technol. 33, 1224-1229 https://doi.org/10.1021/es981117e
  4. Jeong, Y-H, Kim, J-E., Kim, J-H., Lee, Y-D., Lim, C-H. and Hur, J-H. (2004), New Pesticides, Sigma Press, Seoul, Korea, p.231
  5. Korea Crop Protection Association (2007) Pesticide Application Manual, Seoul, Korea, p.637
  6. Taylor & Francis Group (2006) Handbook of Physical- Chemical properties and Environmental Fate for Organic Chemicals, CRC Press, U.S.A., p.3530-3533
  7. Carrizosa, M.J., Koskinen, W.C., Hermosin, M.C. and Cornejo, J. (2001), Dicamba adsorption-desorption on organoclays, Applied Clay Science 18, 223-231 https://doi.org/10.1016/S0169-1317(01)00037-0
  8. Matheson, L.J. and Tratnyek. P.G. (1994) Reductive dehalogenation of chlorinated methanes by iron metal, Environ. Sci. Technol. 28(12), 2045-2053 https://doi.org/10.1021/es00061a012
  9. Kim, J-S., Shea, Patrick J., Yang, Jae E. and Kim, J.-E. (2007) Halide salts accelerate degradation of high explosives by zerovalent iron, Environmental Pollution 147(3), 634-641 https://doi.org/10.1016/j.envpol.2006.10.010
  10. Kim, D-H., Choi, C-L., Kim, T-H., Park, M. and Kim, J-E. (2007) Degradation patterns of organophosphorus insecticide, chlorpyrifis by functionalized zerovalent iron, J. Korean Soc. Appl. Biol. Chem. 50(4), 321-326
  11. Bergendahl, John A. and Thies, Timothy P. (2004), Fenton's oxidation of MTBE with zero-valent iron, Water Research, 38, 327-334 https://doi.org/10.1016/j.watres.2003.10.003
  12. Liao, Chih-Hsing, Kang, Shyn-Fang and Hsn, Yu-Wei (2003) Zero-valent iron reduction of nitrate in the presence of ultraviolet light, oranic matter and hydrogen peroxide, Water Research, 37, 4109-4118 https://doi.org/10.1016/S0043-1354(03)00248-3
  13. Oh, Seok-Young, Chiu, Pei C., Lim, Byung J. and Cha, Daniel K. (2003) Enhancing Fenton oxidation of TNT and RDX through pretreatment with zero-valent iron, Water Research, 37, 4275-4283 https://doi.org/10.1016/S0043-1354(03)00343-9
  14. Park, J-W., Lee, S-E., Rhee, I-K., Kim, J-E. (2002) Transformation of the fungicide chlorothalonil by Fenton, J. Agric. Food Chem. 50, 7570-7575 https://doi.org/10.1021/jf025772o
  15. Joo, Sung Hee, Feitz, Andrew J. and Waite, T. David (2004) Oxidative degradation of the carbothioate herbicide, molinate, using nanoscale zero-valent iron, Environ. Sci. Technol. 38, 2242-2247 https://doi.org/10.1021/es035157g
  16. Chu, W. and Wong, C.C. (2003) The photocatalytic degradation of dicamba in $TiO_2$ suspensions with the help of hydrogen peroxide by different near UV irradiation, Water Reserch, 38, 1037-1043
  17. Gibb, C., Satapanajaru, T., Comfort, S.D. and Shea, P.J. (2004) Remediating dicamba-contaminated water with zerovalent iron, Chemosphere, 54, 841-848 https://doi.org/10.1016/j.chemosphere.2003.09.032
  18. Ghauch, Antoine (2001) Degradation of benomyl, picloram and dicamba in a conical apparatus by zero-valent iron powder, Chemosphere, 43, 1109-1117 https://doi.org/10.1016/S0045-6535(00)00184-3
  19. Oh, K-S., Oh, B-Y., Park, S-S., Ihm, Y-B., Kyung, K-S. and Lee, J-K. (2000) Degradation of the herbicide dicamba under sunlight and in soil, The Korean Journal of Pesticide Science, 4(3), 7-14
  20. Vink, M. and van der Poll, J.M. (1996) Gas chromatographic determination of acid herbicides in surface water samples with electron-capture detection and mass spectrometric confirmation, Journal of Chromatography A, 733, 361-366 https://doi.org/10.1016/0021-9673(95)00997-3
  21. Joo, Sung Hee, Feitz, Andrew J., Sedlak, David L. and Waite, T. David (2005) Quantification of the oxidizing capacity of nanoparticulate zero-valent iron, Environ. Sci. Technol. 39, 1263-1268 https://doi.org/10.1021/es048983d